cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257079 The least nonzero digit missing from the factorial representation (A007623) of n.

Original entry on oeis.org

1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3, 3, 1, 3, 3, 3, 1, 3, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 1, 3, 1, 4, 4, 4, 1, 4, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 4, 4, 1, 4, 4, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3, 3, 1, 3, 3, 3, 1, 3, 1, 2, 2, 2, 1, 5, 2
Offset: 0

Views

Author

Antti Karttunen, Apr 15 2015

Keywords

Examples

			The least digit > 0 missing from the factorial representation (A007623) of zero, "0", is 1, thus a(0) = 1.
The least digit > 0 missing from the factorial representation of one, "1", is 2, thus a(1) = 2.
The least digit > 0 missing from the factorial representation of 21, "311", is 2, thus a(21) = 2.
		

Crossrefs

Cf. A033312 (the positions of records from a(1) onward.)
Cf. A255411 (the positions of ones.)

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Min[Complement[Range[Max[s]+1], s]]]; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Jan 24 2024 *)
  • Scheme
    (define (A257079 n) (let loop ((digs (uniq (sort (n->factbase n) <))) (mnp 1)) (cond ((null? digs) mnp) ((zero? (car digs)) (loop (cdr digs) mnp)) ((= (car digs) mnp) (loop (cdr digs) (+ 1 mnp))) (else mnp))))
    ;; Convert an integer to a factorial expansion list:
    (define (n->factbase n) (let loop ((n n) (fex (if (zero? n) (list 0) (list))) (i 2)) (cond ((zero? n) fex) (else (loop (floor->exact (/ n i)) (cons (modulo n i) fex) (1+ i))))))
    (define (uniq lista) (let loop ((lista lista) (z (list))) (cond ((null? lista) (reverse! z)) ((and (pair? z) (equal? (car z) (car lista))) (loop (cdr lista) z)) (else (loop (cdr lista) (cons (car lista) z))))))

Formula

Other identities:
For all n >= 1, a(A033312(n)) = n. [n! - 1 gives the first position where n appears. Note also how the digits in factorial base representation may get arbitrarily large values.]