cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257084 G.f. A(x) satisfies A(F(x)) = x, where F(x) is the g.f. of A251690.

Original entry on oeis.org

1, 1, 4, 17, 80, 407, 2160, 11859, 66754, 383210, 2234921, 13204685, 78870454, 475453371, 2888991879, 17675743626, 108801199823, 673302178725, 4186513098755, 26142455226568, 163873586066647, 1030820865387599, 6504789754356175, 41166205256238155, 261217480924768212, 1661598566523216015
Offset: 1

Views

Author

Paul D. Hanna, Apr 15 2015

Keywords

Comments

G.f. F(x) of A251690 satisfies the condition that G(F(x)) is a power series in x consisting entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0, where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 17*x^4 + 80*x^5 + 407*x^6 + 2160*x^7 +...
such that the series reversion of A(x) yields the g.f. F(x) of A251690:
F(x) = x - x^2 - 2*x^3 - 2*x^4 - x^6 - 3*x^8 - 3*x^10 - 3*x^11 - 3*x^13 - 2*x^14 - 3*x^15 - x^16 - 2*x^17 - x^19 - 2*x^20 - 2*x^23 - 2*x^27 - 3*x^29 - 2*x^31 - x^33 - 3*x^35 - 2*x^36 - x^37 - x^38 - 3*x^39 - x^40 - 2*x^42 - 2*x^43 - 3*x^44 - x^45 - 3*x^46 - x^47 - x^48 - x^51 -...
in which all coefficients after the first are in the interval [-3,0].
RELATED SERIES.
Given G(x) = 1 + x*G(x)^3, which begins
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 +...
then
G(F(x)) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 17*x^5 + 36*x^6 + 78*x^7 + 169*x^8 + 370*x^9 + 813*x^10 + 1793*x^11 + 3971*x^12 +...+ A251691(n)*x^n +...
consists entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0.
Also, a related series is defined by the limits:
1/F'(x) = Limit ( A(F(x) + x^n) - x ) / x^n, and
1/F'(x) = Limit ( x - A(F(x) - x^n) ) / x^n, where
1/F'(x) = 1 + 2*x + 10*x^2 + 40*x^3 + 156*x^4 + 638*x^5 + 2544*x^6 + 10248*x^7 + 41152*x^8 + 165350*x^9 + 664477*x^10 + 2669644*x^11 + 10727319*x^12 + 43102392*x^13 + 173188681*x^14 + 695884096*x^15 + 2796104790*x^16 +...
		

Crossrefs

Programs

  • PARI
    /* Prints initial N terms: */
    N=50;
    /* G(x) = 1 + x*G(x)^3 is the g.f. of A001764: */
    {G=1+serreverse(x/(1+x +x*O(x^(3*N+10)))^3); }
    /* Build the series reversion, then print coefficients at end: */
    {A=[1, -1]; for(l=1, N, A=concat(A, -4);
    for(i=1, 4, A[#A]=A[#A]+1;
    V=Vec(subst(G, x, x*truncate(Ser(A)) +O(x^floor(3*#A+1)) ));
    if((sign(V[3*#A])+1)/2==1, print1(".");break)););
    Vec(serreverse(x*Ser(A)))}