cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257103 Composite numbers n such that n'=(n+4)', where n' is the arithmetic derivative of n.

Original entry on oeis.org

21, 56, 1862, 2526, 1352797, 2201422, 3206062, 34844422, 42400318, 8586830293, 20967471193, 23194695022, 43790421673, 45041812729, 48438881254, 101060544853, 177839630854, 180939891343, 198419358598, 305550990673, 354694083622, 661663823662, 785220739279
Offset: 1

Views

Author

Paolo P. Lava, Apr 17 2015

Keywords

Comments

If the limitation of being composite is removed we also have the lesser of cousin prime pairs (A023200).
a(45) > 5*10^13. - Hiroaki Yamanouchi, Aug 27 2015

Examples

			21' = (21 + 4)' = 25' = 10;
56' = (56 + 4)' = 60' = 92.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(q,h) local a,b,n,p;
    for n from 1 to q do if not isprime(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=(n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]);
    if a=b then print(n); fi; fi; od; end: P(10^9,4);
  • Mathematica
    a[n_] := If[Abs@n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Select[Range@ 10000, And[CompositeQ@ #, a@ # == a[# + 4]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)

Extensions

a(8)-a(10) from Lars Blomberg, May 06 2015
a(11)-a(23) from Hiroaki Yamanouchi, Aug 27 2015