A257105 Composite numbers n such that n'=(n+8)', where n' is the arithmetic derivative of n.
132, 476, 2108, 16748, 27548, 28676, 99524, 100076, 239948, 308228, 344129, 573476, 601676, 822908, 860276, 883268, 1673228, 3274010, 4959476, 7548956, 8916044, 9048428, 9215348, 9643169, 9833588, 10011908, 14773676, 17119436, 18529964, 19459028, 21335948, 21739148
Offset: 1
Keywords
Examples
132' = (132 + 8)' = 140' = 188; 476' = (476 + 8)' = 484' = 572.
Programs
-
Maple
with(numtheory); P:= proc(q,h) local a,b,n,p; for n from 1 to q do if not isprime(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=(n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]); if a=b then print(n); fi; fi; od; end: P(10^9,8);
-
Mathematica
a[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Select[Range@ 100000, And[CompositeQ@ #, a@# == a[# + 8]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)
Comments