cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257105 Composite numbers n such that n'=(n+8)', where n' is the arithmetic derivative of n.

Original entry on oeis.org

132, 476, 2108, 16748, 27548, 28676, 99524, 100076, 239948, 308228, 344129, 573476, 601676, 822908, 860276, 883268, 1673228, 3274010, 4959476, 7548956, 8916044, 9048428, 9215348, 9643169, 9833588, 10011908, 14773676, 17119436, 18529964, 19459028, 21335948, 21739148
Offset: 1

Views

Author

Paolo P. Lava, Apr 17 2015

Keywords

Comments

If the limitation of being composite is removed we also have the numbers p such that if p is prime then p + 8 is prime too (A023202).

Examples

			132' = (132 + 8)' = 140' = 188;
476' = (476 + 8)' = 484' = 572.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(q,h) local a,b,n,p;
    for n from 1 to q do if not isprime(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=(n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]);
    if a=b then print(n); fi; fi; od; end: P(10^9,8);
  • Mathematica
    a[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]];
    Select[Range@ 100000, And[CompositeQ@ #, a@# == a[# + 8]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)