A257107 Composite numbers n such that n'=(n+12)', where n' is the arithmetic derivative of n.
16, 65, 88, 209, 11009, 38009, 680609, 2205209, 2860198, 3515609, 4347209, 5365387, 5809361, 10595009, 12006209, 31979009, 83255059, 89019209, 152915402, 169130009, 172147423, 225869899, 244766009, 247590209, 258084209, 325622009, 357777209, 377330609
Offset: 1
Keywords
Examples
16' = (16 + 12)' = 28' = 32; 65' = (65 + 12)' = 77' = 18.
Programs
-
Maple
with(numtheory); P:= proc(q,h) local a,b,n,p; for n from 1 to q do if not isprime(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=(n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]); if a=b then print(n); fi; fi; od; end: P(10^9,12);
-
Mathematica
a[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Select[Range@ 100000, And[CompositeQ@ #, a@# == a[# + 12]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)
Extensions
a(16)-a(28) from Lars Blomberg, May 06 2015
Comments