cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257226 Numbers that have at least one divisor containing the digit 9 in base 10.

Original entry on oeis.org

9, 18, 19, 27, 29, 36, 38, 39, 45, 49, 54, 57, 58, 59, 63, 69, 72, 76, 78, 79, 81, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 108, 109, 114, 116, 117, 118, 119, 126, 129, 133, 135, 138, 139, 144, 145, 147, 149, 152, 153, 156, 158, 159, 162, 169, 171, 174
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 9.
A011539 (numbers that contain a 9) is a subsequence.

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 9.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257224 (7), A257225 (8).

Programs

  • Magma
    [n: n in [1..1000] | [9] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 9] > 0 &] (* after Michael De Vlieger *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 9), return(1))); 0 \\ after Charles R Greathouse IV
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257226_gen(): return filter(lambda n:any('9' in str(d) for d in divisors(n,generator=True)),count(1))
    A257226_list = list(islice(A257226_gen(),20)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.