A257238 Triangle T(n, k) = n^3 - k^3, 0 <= k < = n.
0, 1, 0, 8, 7, 0, 27, 26, 19, 0, 64, 63, 56, 37, 0, 125, 124, 117, 98, 61, 0, 216, 215, 208, 189, 152, 91, 0, 343, 342, 335, 316, 279, 218, 127, 0, 512, 511, 504, 485, 448, 387, 296, 169, 0, 729, 728, 721, 702, 665, 604, 513, 386, 217, 0, 1000, 999, 992, 973, 936, 875, 784, 657, 488, 271, 0
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 0: 0 1: 1 0 2: 8 7 0 3: 27 26 19 0 4: 64 63 56 37 0 5: 125 124 117 98 61 0 6: 216 215 208 189 152 91 0 7: 343 342 335 316 279 218 127 0 8: 512 511 504 485 448 387 296 169 0 9: 729 728 721 702 665 604 513 386 217 0 10: 1000 999 992 973 936 875 784 657 488 271 0 ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
Programs
-
Maple
for n from 0 to 10 do seq(n^3-k^3,k=0..n) od; # Robert Israel, May 10 2018
-
Mathematica
Table[n^3-k^3,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 02 2021 *)
Formula
T(n, k) = A025581(n, k)*(A025581(n, k)^2 + 3* A079904(n, k)) (see the identity mentioned in a comment).
Columns (with one leading zero and offset 0): k=0: l^3 = A000578(l), k=1: (l+1)^3 - 1 = A068601(l+1), k=2: l*(l^2 + 6*l + 12), k=3: l*(l^2 + 9*l + 27), k=4: l*(l^2 + 12*l + 48), k=5: l*(l^2 + 15*l + 75), ...
G.f. for T(n,k): (1+4*x+4*x*y+x^2-14*x^2*y+x^2*y^2-2*x^3*y-2*x^3*y^2+7*x^4*y^2)*x/((1-x*y)^3*(1-x)^4). - Robert Israel, May 10 2018
Comments