cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257238 Triangle T(n, k) = n^3 - k^3, 0 <= k < = n.

Original entry on oeis.org

0, 1, 0, 8, 7, 0, 27, 26, 19, 0, 64, 63, 56, 37, 0, 125, 124, 117, 98, 61, 0, 216, 215, 208, 189, 152, 91, 0, 343, 342, 335, 316, 279, 218, 127, 0, 512, 511, 504, 485, 448, 387, 296, 169, 0, 729, 728, 721, 702, 665, 604, 513, 386, 217, 0, 1000, 999, 992, 973, 936, 875, 784, 657, 488, 271, 0
Offset: 0

Views

Author

Wolfdieter Lang, May 12 2015

Keywords

Comments

See the comments in A025581 and A079904 on a problem by François Viète (Vieta)(1593). Regarding that problem, note the simple identity: n^3 - k^3 = (n - k)^3 + 3*n*k*(n - k), for n > = k >= 0.
Row sums give A126274(n-1) for n >= 1, and 0 for n=0.
Alternating row sums are ars(2*n) = ars(2*n-1) = (4*n-3)*n^2 = A103532(n-1), for n >= 1, and ars(0) = 0.

Examples

			The triangle T(n, k) begins:
  n\k    0   1   2   3   4   5   6   7   8   9  10
   0:    0
   1:    1   0
   2:    8   7   0
   3:   27  26  19   0
   4:   64  63  56  37   0
   5:  125 124 117  98  61   0
   6:  216 215 208 189 152  91   0
   7:  343 342 335 316 279 218 127   0
   8:  512 511 504 485 448 387 296 169   0
   9:  729 728 721 702 665 604 513 386 217   0
  10: 1000 999 992 973 936 875 784 657 488 271   0
  ...
		

Crossrefs

Programs

  • Maple
    for n from 0 to 10 do seq(n^3-k^3,k=0..n) od; # Robert Israel, May 10 2018
  • Mathematica
    Table[n^3-k^3,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 02 2021 *)

Formula

T(n, k) = A025581(n, k)*(A025581(n, k)^2 + 3* A079904(n, k)) (see the identity mentioned in a comment).
Columns (with one leading zero and offset 0): k=0: l^3 = A000578(l), k=1: (l+1)^3 - 1 = A068601(l+1), k=2: l*(l^2 + 6*l + 12), k=3: l*(l^2 + 9*l + 27), k=4: l*(l^2 + 12*l + 48), k=5: l*(l^2 + 15*l + 75), ...
G.f. for T(n,k): (1+4*x+4*x*y+x^2-14*x^2*y+x^2*y^2-2*x^3*y-2*x^3*y^2+7*x^4*y^2)*x/((1-x*y)^3*(1-x)^4). - Robert Israel, May 10 2018