cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257241 Irregular triangle read by rows: Stifel's version of the arithmetical triangle.

Original entry on oeis.org

1, 2, 3, 3, 4, 6, 5, 10, 10, 6, 15, 20, 7, 21, 35, 35, 8, 28, 56, 70, 9, 36, 84, 126, 126, 10, 45, 120, 210, 252, 11, 55, 165, 330, 462, 462, 12, 66, 220, 495, 792, 924, 13, 78, 286, 715, 1287, 1716, 1716, 14, 91, 364, 1001, 2002, 3003, 3432, 15, 105, 455, 1365, 3003, 5005, 6435, 6435
Offset: 1

Views

Author

Wolfdieter Lang, May 22 2015

Keywords

Comments

The row length of this array is A008619(n-1), for n >= 1: 1, 1, 2, 2, ...
This is a truncated version of Pascal's triangle used by Michael Stifel (1487?-1567). It already appeared on the title page (frontispiece) of Peter Apianus's book of 1527 on business arithmetic: "Eyn Newe Und wolgegründte underweysung aller Kauffmanns Rechnung in dreyen Büchern". See the Kac reference, p. 394 and Table 12.1 on p. 395. It appeared in Stifel's 1553 edition of Rudolff's Coß: "Die Coß Christoffs Rudolffs. Die schönen Exemplen der Coß Durch Michael Stifel gebessert und sehr gemehrt." See the MacTutor Archive link and the Alten reference.
The row sums give A258143. The alternating row sums give A258144.
T(n,A008619(n-1)) = A001405(n). - Reinhard Zumkeller, May 22 2015

Examples

			The irregular triangle T(n, m) begins:
  n\m|  1    2    3    4    5    6    7 ...
  ---+-------------------------------------
   1 |  1
   2 |  2
   3 |  3    3
   4 |  4    6
   5 |  5   10   10
   6 |  6   15   20
   7 |  7   21   35   35
   8 |  8   28   56   70
   9 |  9   36   84  126  126
  10 | 10   45  120  210  252
  11 | 11   55  165  330  462  462
  12 | 12   66  220  495  792  924
  13 | 13   78  286  715 1287 1716 1716
  ...
		

References

  • H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, p. 260.
  • Victor J. Kac, A History of Mathematics, third edition, Addison-Wesley, 2009.
  • Reich, Karin; Michael Stifel. In: Folkerts, Menso; Eberhard Knobloch; Karin Reich: Maß, Zahl und Gewicht: Mathematik als Schlüssel zu Weltverständnis und Weltbeherrschung. Wolfenbüttel 1989, S. 73 - 95 und 373.

Crossrefs

Cf. A007318, A258143, A258144, A014410 (Scheubel's version).
Cf. A001405 (right edge).

Programs

  • Haskell
    a257241 n k = a257241_tabf !! (n-1) !! (k-1)
    a257241_row n = a257241_tabf !! (n-1)
    a257241_tabf = iterate stifel [1] where
       stifel xs@(x:_) = if odd x then xs' else xs' ++ [last xs']
                         where xs' = zipWith (+) xs (1 : xs)
    -- Reinhard Zumkeller, May 22 2015
  • Mathematica
    Table[Binomial[n, m], {n, 15}, {m, Ceiling[n/2]}] (* Paolo Xausa, Nov 14 2024 *)

Formula

T(n, m) = binomial(n, m), n >= 1, m = 1, 2, ..., ceiling(n/2).
O.g.f. row m = 1, 2, ..., 4 (with leading zeros): x/(1-x)^2, x^3*(3-3*x+x^2)/(1-x)^3, x^5*(10-20*x+15*x^2-4*x^3)/(1-x)^4, x^7*(35-105*x+126*x^2-70*x^3+15*x^4)/(1-x)^5.