A257241 Irregular triangle read by rows: Stifel's version of the arithmetical triangle.
1, 2, 3, 3, 4, 6, 5, 10, 10, 6, 15, 20, 7, 21, 35, 35, 8, 28, 56, 70, 9, 36, 84, 126, 126, 10, 45, 120, 210, 252, 11, 55, 165, 330, 462, 462, 12, 66, 220, 495, 792, 924, 13, 78, 286, 715, 1287, 1716, 1716, 14, 91, 364, 1001, 2002, 3003, 3432, 15, 105, 455, 1365, 3003, 5005, 6435, 6435
Offset: 1
Examples
The irregular triangle T(n, m) begins: n\m| 1 2 3 4 5 6 7 ... ---+------------------------------------- 1 | 1 2 | 2 3 | 3 3 4 | 4 6 5 | 5 10 10 6 | 6 15 20 7 | 7 21 35 35 8 | 8 28 56 70 9 | 9 36 84 126 126 10 | 10 45 120 210 252 11 | 11 55 165 330 462 462 12 | 12 66 220 495 792 924 13 | 13 78 286 715 1287 1716 1716 ...
References
- H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, p. 260.
- Victor J. Kac, A History of Mathematics, third edition, Addison-Wesley, 2009.
- Reich, Karin; Michael Stifel. In: Folkerts, Menso; Eberhard Knobloch; Karin Reich: Maß, Zahl und Gewicht: Mathematik als Schlüssel zu Weltverständnis und Weltbeherrschung. Wolfenbüttel 1989, S. 73 - 95 und 373.
Links
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
- MacTutor History of Mathematics archive, Petrus Apianus.
- MacTutor History of Mathematics archive, Michael Stifel
- Maurer, Bertram, Michael Stifel, 1999, Kolping-Kolleg Stuttgart.
- Wikipedia, Petrus Apianus.
- Wikipedia, Michael Stifel.
Programs
-
Haskell
a257241 n k = a257241_tabf !! (n-1) !! (k-1) a257241_row n = a257241_tabf !! (n-1) a257241_tabf = iterate stifel [1] where stifel xs@(x:_) = if odd x then xs' else xs' ++ [last xs'] where xs' = zipWith (+) xs (1 : xs) -- Reinhard Zumkeller, May 22 2015
-
Mathematica
Table[Binomial[n, m], {n, 15}, {m, Ceiling[n/2]}] (* Paolo Xausa, Nov 14 2024 *)
Formula
T(n, m) = binomial(n, m), n >= 1, m = 1, 2, ..., ceiling(n/2).
O.g.f. row m = 1, 2, ..., 4 (with leading zeros): x/(1-x)^2, x^3*(3-3*x+x^2)/(1-x)^3, x^5*(10-20*x+15*x^2-4*x^3)/(1-x)^4, x^7*(35-105*x+126*x^2-70*x^3+15*x^4)/(1-x)^5.
Comments