A257261 One-based position of the rightmost one in the factorial base representation (A007623) of n, 0 if no one is present.
0, 1, 2, 1, 0, 1, 3, 1, 2, 1, 3, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 4, 1, 2, 1, 4, 1, 3, 1, 2, 1, 3, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 0, 1, 2, 1, 0, 1, 3, 1, 2, 1, 3, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 3, 1, 2, 1, 3, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 3, 1, 2, 1, 3, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 5
Offset: 0
Examples
For n = 0, with factorial base representation (A007623) "0", there are no ones present at all, thus a(0) = 0. For n = 1, with representation "1", the rightmost one occurs at digit-position 1 (when the least significant digit has index 1, etc.), thus a(1) = 1. For n = 6, with representation "100", the rightmost one occurs at position 3, thus a(6) = 3. For n = 11, with representation "121", the rightmost one occurs at digit-position 1 (when the least significant digit has index 1, etc.), thus a(11) = 1.
Links
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{k = n, m = 2, r, s = {}, p}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; If[MissingQ[(p = FirstPosition[s, 1])], 0, p[[1]]]]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
-
Scheme
(define (A257261 n) (let loop ((n n) (i 2)) (cond ((zero? n) 0) ((= 1 (modulo n i)) (- i 1)) (else (loop (floor->exact (/ n i)) (+ 1 i))))))
Formula
Other identities:
For all n >= 1, a(n!) = n.