cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A255411 Shift factorial base representation of n one digit left (with 0 added to right), increment all nonzero digits by one, then convert back to decimal; Numbers with no digit 1 in their factorial base representation.

Original entry on oeis.org

0, 4, 12, 16, 18, 22, 48, 52, 60, 64, 66, 70, 72, 76, 84, 88, 90, 94, 96, 100, 108, 112, 114, 118, 240, 244, 252, 256, 258, 262, 288, 292, 300, 304, 306, 310, 312, 316, 324, 328, 330, 334, 336, 340, 348, 352, 354, 358, 360, 364, 372, 376, 378, 382, 408, 412, 420, 424, 426, 430, 432, 436, 444
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2015

Keywords

Comments

Nonnegative integers such that the number of ones (A257511) in their factorial base representation (A007623) is zero.
Nonnegative integers such that the least missing nonzero digit (A257079) in their factorial base representation is one.
a(n) can be also directly computed from n by "shifting left" its factorial base representation (that is, by appending one zero to the right, see A153880) and then incrementing all nonzero digits by one, and then converting the resulting (still valid) factorial base number back to decimal. See the examples.
The sequences A227130 and A227132 are closed under a(n), in other words, permutation listed as the a(n)-th entry in tables A060117 & A060118 has the same parity as the n-th entry in those same tables.

Examples

			Factorial base representation (A007623) of 1 is "1", shifting it left yields "10", and when we increment all nonzero digits by one, we get "20", which is the factorial base representation of 4 (as 4 = 2*2! + 0*1!), thus a(1) = 4.
F.b.r. of 2 is "10", shifting it left yields "100", and "200" is f.b.r. of 12, thus a(2) = 12.
F.b.r. of 43 is "1301", shifting it left and incrementing all nonzeros by one yields "24020", which is f.b.r of 340, thus a(43) = 340.
		

Crossrefs

Complement: A256450.
Positions of ones in A257079, fixed points of A257080, positions of zeros in A257511, A257081 and A257261.
Cf. also A227130/A227132, A060117/A060118 and also arrays A257503 & A257505.

Programs

  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++]; m = n; len = i; dList = Table[0, {len}]; Do[currDigit = 0; While[m >= j!, m = m - j!; currDigit++]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; s = Table[FromDigits[factBaseIntDs[n]], {n, 500}]; {0}~Join~Flatten@ Position[s, x_ /; DigitCount[x][[1]] == 0](* Michael De Vlieger, Apr 27 2015, after Alonso del Arte at A007623 *)
    Select[Range[0, 444], ! MemberQ[IntegerDigits[#, MixedRadix[Reverse@ Range@ 12]], 1] &] (* Michael De Vlieger, May 30 2016, Version 10.2 *)
    r = MixedRadix[Reverse@Range[2, 12]]; Table[FromDigits[Map[If[# == 0, 0, # + 1] &, IntegerDigits[n, r]]~Join~{0}, r], {n, 0, 60}] (* Michael De Vlieger, Aug 14 2016, Version 10.2 *)
  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==0 else sum(int(y[i])*f(i + 1) for i in range(len(y))) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017

A256450 Numbers that have at least one 1-digit in their factorial base representation (A007623).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 95, 97, 98, 99, 101
Offset: 0

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Comments

Numbers n for which A257679(n) = 1, i.e., numbers n such that the least nonzero digit in their factorial base representation (A007623) is 1.
Involution A225901 maps each term of this sequence to a unique term of A273670, and vice versa.
Starting offset is zero (with a(0) = 1) because it is the most natural offset for the given fast recurrence.

Crossrefs

Complement of A255411.
Cf. A257680 (characteristic function), A273662 (left inverse).
First row of A257503, first column of A257505.
Subsequences: A059590 (apart from its zero-term), A255341, A255342, A255343, A257262, A257263, A258198, A258199.
Cf. also A227187 (numbers with at least one nonleading zero) and A273670, A225901.

Programs

  • Mathematica
    Select[Range@ 101, MemberQ[IntegerDigits[#, MixedRadix[Reverse@ Range@ 12]], 1] &] (* Michael De Vlieger, May 30 2016, Version 10.2 *)
    r = MixedRadix[Reverse@ Range[2, 12]]; Select[Range@ 101, Min[IntegerDigits[#, r] /. 0 -> Nothing] == 1 &]  (* Michael De Vlieger, Aug 14 2016, Version 10.2 *)
  • Python
    def A(n, p=2): return n if n

    =1]) # Indranil Ghosh, Jun 19 2017

Formula

a(0) = 1, and for n >= 1, if A257511(1+a(n-1)) > 0, then a(n) = a(n-1) + 1, otherwise a(n-1) + 2. [In particular, if the previous term is 2k, then the next term is 2k+1, because all odd numbers are members.]
Other identities:
For all n >= 0, A273662(a(n)) = n. [A273662 works as the left inverse for this sequence.]
From Antti Karttunen, May 26 2015: (Start)
Alternative recurrence for the same sequence:
Set k = A258198(n), d = n - A258199(n) and f = A000142(k+1) = (k+1)! If d < f then b(n) = f+d, otherwise b(n) = ((2+floor((d-f)/A258199(n))) * f) + b((d-f) mod A258199(n)). For offset=1 sequence, define a(n) = b(n-1).
(End)

Extensions

Starting offset changed from 1 to 0 by Antti Karttunen, May 30 2016

A257263 Numbers such that the least missing nonzero digit (A257079) in their factorial base representation is 3.

Original entry on oeis.org

5, 10, 11, 13, 14, 15, 17, 28, 29, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 101, 106, 107, 109, 110, 111, 113, 124, 125, 130, 131, 132, 133, 134, 135, 136, 137, 148, 149, 154, 155, 156, 157, 158, 159, 160, 161, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 220
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Examples

			The factorial base representation (A007623) of 5 is "21", the least nonzero digit missing is 3, thus 5 is included.
The f.b.r. of 10 is "120", and likewise, 3 is the least missing digit, thus 10 is included.
The f.b.r. of 101 is "4021", where the least missing digit is 3, thus 101 is included in the sequence.
		

Crossrefs

Subsequence of A256450.

Programs

  • Mathematica
    q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; SubsetQ[s, {1, 2}] && !MemberQ[s, 3]]; Select[Range[220], q] (* Amiram Eldar, Feb 14 2024 *)

A257692 Numbers such that the smallest nonzero digit present (A257679) in their factorial base representation is 2.

Original entry on oeis.org

4, 12, 16, 22, 48, 52, 60, 64, 66, 70, 76, 84, 88, 94, 100, 108, 112, 118, 240, 244, 252, 256, 258, 262, 288, 292, 300, 304, 306, 310, 312, 316, 324, 328, 330, 334, 336, 340, 348, 352, 354, 358, 364, 372, 376, 382, 408, 412, 420, 424, 426, 430, 436, 444, 448, 454, 460, 468, 472, 478, 484, 492, 496, 502
Offset: 1

Views

Author

Antti Karttunen, May 04 2015

Keywords

Comments

Numbers k for which A257679(k) = 2.

Examples

			Factorial base representation (A007623) of 22 is "320" as 22 = 3*3! + 2*2! + 0*1!, thus a(22) = 2.
		

Crossrefs

Row 2 of A257503.
Cf. also A257262.

Programs

  • Mathematica
    q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; !MemberQ[s, 1] && MemberQ[s, 2]]; Select[Range[500], q] (* Amiram Eldar, Feb 14 2024 *)
  • Python
    def A(n, p=2): return n if n
Showing 1-4 of 4 results.