A257292 Numbers whose square can be written as the sum of two consecutive nonsquares.
5, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
Offset: 1
Keywords
Examples
9 is a term because 9^2 = 81 = 40 + 41, neither of which are square.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[1, 131, 2], AllTrue[{Floor[#^2/2], Ceiling[#^2/2]}, ! IntegerQ@ Sqrt@ # &] &] (* Michael De Vlieger, Dec 11 2015 *)
-
PARI
select( is(n)={bittest(n,0) && !issquare(n^2\2) && !issquare(n^2\/2)}, [0..140]) \\ Corrected Jul 06 2021, thanks to an observation by Bill McEachen
Comments