cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A257707 Numbers n such that T(n) + T(n+1) + ... + T(n+22) is a square, where T = A000217 (triangular numbers).

Original entry on oeis.org

56, 470, 1094, 7856, 128534, 201539, 3293081, 23435699, 53805155, 382911281, 6256309475, 9809462822, 160274811896, 1140616029542, 2618697452438, 18636292598096, 304494582579398, 477426555904883, 7800575092244921, 55513782134933123, 127452004956911987
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-23*y^2-529*y-4048 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13), A257708 (length 25), A257709 (length 27), A257710 (length 37).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 48670, -48670, 0, 0, 0, 0, -1, 1}, {56, 470, 1094, 7856, 128534, 201539, 3293081, 23435699, 53805155, 382911281, 6256309475, 9809462822, 160274811896}, 50] (* Vincenzo Librandi, May 05 2015 *)
  • PARI
    Vec(x*(10*x^12 +3*x^11 +66*x^10 +414*x^9 +624*x^8 +6762*x^7 -366022*x^6 -73005*x^5 -120678*x^4 -6762*x^3 -624*x^2 -414*x -56) / ((x -1)*(x^12 -48670*x^6 +1)) + O(x^100))

Formula

G.f.: x*(10*x^12 +3*x^11 +66*x^10 +414*x^9 +624*x^8 +6762*x^7 -366022*x^6 -73005*x^5 -120678*x^4 -6762*x^3 -624*x^2 -414*x -56) / ((x -1)*(x^12 -48670*x^6 +1)).

A257708 Numbers n such that T(n) + T(n+1) + ... + T(n+24) is a square, where T = A000217 (triangular numbers).

Original entry on oeis.org

25, 55, 208, 382, 1273, 2287, 7480, 13390, 43657, 78103, 254512, 455278, 1483465, 2653615, 8646328, 15466462, 50394553, 90145207, 293721040, 525404830, 1711931737, 3062283823, 9977869432, 17848298158, 58155284905, 104027505175, 338953840048, 606316732942
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-25*y^2-625*y-5200 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13), A257707 (length 23), A257709 (length 27), A257710 (length 37).

Programs

  • Mathematica
    LinearRecurrence[{1, 6, -6, -1, 1}, {25, 55, 208, 382, 1273}, 50] (* Vincenzo Librandi, May 05 2015 *)
  • PARI
    Vec(x*(x^2+4*x+5)*(2*x^2-2*x-5)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^100))

Formula

G.f.: x*(x^2+4*x+5)*(2*x^2-2*x-5) / ((x-1)*(x^2-2*x-1)*(x^2+2*x-1)).

A257709 Numbers n such that T(n) + T(n+1) + ... + T(n+26) is a square, where T = A000217 (triangular numbers).

Original entry on oeis.org

8, 14, 39, 53, 103, 112, 206, 264, 509, 647, 1141, 1230, 2160, 2734, 5159, 6525, 11415, 12296, 21502, 27184, 51189, 64711, 113117, 121838, 212968, 269214, 506839, 640693, 1119863, 1206192, 2108286, 2665064, 5017309, 6342327, 11085621, 11940190, 20870000
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-27*y^2-729*y-6552 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13), A257707 (length 23), A257708 (length 25), A257710 (length 37).

Programs

Formula

G.f.: x*(2*x^12+x^11+6*x^10+2*x^9+5*x^8+2*x^7-14*x^6-9*x^5-50*x^4-14*x^3-25*x^2-6*x-8) / ((x-1)*(x^12-10*x^6+1)).

A257710 Numbers n such that T(n) + T(n+1) + ... + T(n+36) is a square, where T = A000217 (triangular numbers).

Original entry on oeis.org

5, 32, 291, 661, 4102, 8515, 13685, 113558, 182368, 377701, 2290342, 5027232, 30483491, 63130838, 101378488, 840238915, 1349295285, 2794368792, 16944086651, 37191598501, 225516999142, 467042067835, 749998177365, 6216087516438, 9982086472888, 20672740082341
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-37*y^2-1369*y-16872 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13), A257707 (length 23), A257708 (length 25), A257709 (length 27).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 7398, -7398, 0, 0, 0, 0, 0, 0, -1, 1}, {5, 32, 291, 661, 4102, 8515, 13685, 113558, 182368, 377701, 2290342, 5027232, 30483491, 63130838, 101378488, 840238915, 1349295285}, 50] (* Vincenzo Librandi, May 05 2015 *)
  • PARI
    Vec(x*(5*x^16 +27*x^15 +10*x^14 +27*x^13 +259*x^12 +370*x^11 +3441*x^10 +4413*x^9 -31820*x^8 -99873*x^7 -5170*x^6 -4413*x^5 -3441*x^4 -370*x^3 -259*x^2 -27*x -5) / ((x -1)*(x^8 -86*x^4 -1)*(x^8 +86*x^4 -1)) + O(x^100))

Formula

G.f.: x*(5*x^16 +27*x^15 +10*x^14 +27*x^13 +259*x^12 +370*x^11 +3441*x^10 +4413*x^9 -31820*x^8 -99873*x^7 -5170*x^6 -4413*x^5 -3441*x^4 -370*x^3 -259*x^2 -27*x -5) / ((x -1)*(x^8 -86*x^4 -1)*(x^8 +86*x^4 -1)).

A262492 The index of the first of two consecutive positive triangular numbers (A000217) the sum of which is equal to the sum of thirteen consecutive positive triangular numbers.

Original entry on oeis.org

25, 90, 207, 1117, 2560, 9255, 21202, 114022, 261195, 944020, 2162497, 11629227, 26639430, 96280885, 220553592, 1186067232, 2716960765, 9819706350, 22494303987, 120967228537, 277103358700, 1001513766915, 2294198453182, 12337471243642, 28261825626735
Offset: 1

Views

Author

Colin Barker, Sep 24 2015

Keywords

Comments

For the index of the first of the corresponding thirteen consecutive triangular numbers, see A257293.

Examples

			25 is in the sequence because T(25)+T(26) = 325+351 = 676 = 6+...+120 = T(3)+...+T(15), where T(k) is the k-th triangular number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(12*x^8+13*x^6+65*x^5-1107*x^4+910*x^3+117*x^2+65*x+25)/((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)) + O(x^30))

Formula

G.f.: -x*(12*x^8+13*x^6+65*x^5-1107*x^4+910*x^3+117*x^2+65*x+25) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)).

A254443 Numbers n such that T(n) + T(n+1) + ... + T(n+21) is a square, where T(m) = A000217(m) is the m-th triangular number.

Original entry on oeis.org

35, 75, 911, 1707, 18383, 34263, 366947, 683751, 7320755, 13640955, 146048351, 272135547, 2913646463, 5429070183, 58126881107, 108309268311, 1159623975875, 2160756296235, 23134352636591, 43106816656587, 461527428756143, 859975576835703, 9207414222486467
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-22*y^2-484*y-3542 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13).

Programs

  • PARI
    Vec(x*(9*x^4+4*x^3-136*x^2-40*x-35)/((x-1)*(x^4-20*x^2+1)) + O(x^100))

Formula

G.f.: x*(9*x^4+4*x^3-136*x^2-40*x-35) / ((x-1)*(x^4-20*x^2+1)).
Showing 1-6 of 6 results.