A257299 Numbers n for which each of the digits 0-9 appears exactly once as first digit in the orbit of n under iterations of n -> (first digit of n)*(n with first digit removed) until a single digit is reached; no leading zeros allowed.
9848, 51948, 56648, 68648, 77712, 84157, 87207, 98142, 98642, 249217, 298242, 325803, 328957, 381082, 383003, 423027, 461992, 516957, 549492, 721712, 796523, 812157, 879707, 925492, 945992, 948742, 950742, 960492, 1248242, 1957313, 2211992, 2259492, 2282707
Offset: 1
Examples
a(1) = 9848 is in the sequence because if we consider 9848 -> 9 * 848 = 7632 -> 7 * 632 = 4424 -> 4 * 424 = 1696 -> 1 * 696 = 696 -> 6 * 96 = 576 -> 5 * 76 = 380 -> 3 * 80 = 240 -> 2 * 40 = 80 -> 8 * 0 = 0, each of the digits 0-9 appears exactly once as first digit. For a(2) = 51948, the sequence is 51948 -> 9740 -> 6660 -> 3960 -> 2880 -> 1760 -> 760 -> 420 -> 80 -> 0. For 79855 -> 68985 -> 53910 -> 19550 -> 9550 -> 4950 -> 3800 -> 2400 -> 800 -> 0, there appears a "leading zero", but only in front of zero. a(54) = 24578492 is in the sequence because it yields the sequence 24578492 -> 9156984 -> 1412856 -> 412856 -> 51424 -> 7120 -> 840 -> 320 -> 60 -> 0.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..55 (a(1)-a(54) from M. F. Hasler)
- L. Blomberg, in reply to E. Angelini, 10-line tables ?, SeqFan list, Apr 28 2015
Programs
-
PARI
is(n,d=0)={while(n,bittest(d,(n=divrem(n,10^L=#Str(n\10)))[1])&&return;#Str(n[2])==L||return;d+=1<
-
PARI
A257299(v=0,d=vector(9,i,i))={Set(concat(vector(#d,i,if(v%d[i],[],if(#d>1, A257299(eval(Str(d[i],v/d[i])),vecextract(d,Str("^"i))),[eval(Str(d[i],v/d[i]))])))))} \\ Use just A257299() for the complete list. - M. F. Hasler, May 11 2015
-
Python
from itertools import permutations A257299_list = [] for n in permutations('123456789',9): x = 0 for d in n: q, r = divmod(x,int(d)) if r: break x = int(d + str(q)) else: A257299_list.append(x) A257299_list = sorted(A257299_list) # Chai Wah Wu, May 11 2015
Comments