A257302 Number of 4th power nonresidues modulo n.
0, 0, 1, 2, 3, 2, 3, 6, 5, 6, 5, 8, 9, 6, 11, 14, 12, 10, 9, 16, 13, 10, 11, 20, 19, 18, 17, 20, 21, 22, 15, 28, 21, 24, 27, 28, 27, 18, 31, 36, 30, 26, 21, 32, 37, 22, 23, 44, 27, 38, 41, 44, 39, 34, 43, 48, 37, 42, 29, 52, 45, 30, 47, 58, 57, 42, 33, 58
Offset: 1
Keywords
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Length[Complement[Range[n - 1], Union[Mod[Range[n]^4, n]]]], {n, 100}] (* Vincenzo Librandi, Apr 20 2015 *)
-
PARI
nrespowp(n,p) = {my(v=vector(n),d=0); for(r=0,n-1,v[1+(r^p)%n]+=1); for(k=1,n,if(v[k]==0,d++)); return(d);} a(n) = nrespowp(n,4)
Formula
a(n) = n - A052273(n).
Satisfies a(n) <= n-2 (residues 0 and 1 are always present).
Comments