A257309 Perfect hyper-4 powers: a^^b, where b <> 1.
0, 1, 4, 16, 27, 256, 3125, 46656, 65536, 823543, 16777216, 387420489, 10000000000, 285311670611, 7625597484987, 8916100448256, 302875106592253, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177, 39346408075296537575424, 1978419655660313589123979, 104857600000000000000000000
Offset: 1
Keywords
Examples
Numbers written as power towers include: 5^^2 = 5^5 = 3125; 3^^3 = 3^3^3 = 3^27 = 7625597484987; 2^^4 = 2^2^2^2 = 2^2^4 = 2^16 = 65536; 0^^5 = 0^0^0^0^0 = 0^0^0^1 = 0^0^0 = 0^1 = 0;
Programs
-
Maple
Digits := 200 ; tpow := proc(a,b,logamax) option remember; if b = 0 then 1; elif b = 1 then a; elif b = 2 then a^a; else # log a^procname(a,b-1) = procnmae(a,b-1)*loga if evalf(procname(a,b-1,logamax)*log(a)) > evalf(logamax) then return -1 ; elif procname(a,b-1,logamax) < 0 then return -1 ; else a^procname(a,b-1,logamax) ; end if; end if; end proc: A257309 := proc(amax) local a,n,m,t, logamax; a := {0,1} ; logamax := evalf(log(amax)) ; for n from 2 to amax do if n^n > amax then break; end if; for m from 2 do t := tpow(n,m,logamax) ; if t > amax or t < 0 then break; elif t <= amax and t > 0 then a := a union {t} ; end if; end do: end do: sort(convert(a,list)) ; end proc: A257309(10^30) ; # R. J. Mathar, Jun 24 2024
Comments