A257363 Number of 3-Motzkin paths with no level steps at height 1.
1, 3, 10, 33, 110, 369, 1247, 4248, 14603, 50724, 178314, 635526, 2300829, 8477382, 31842897, 122103276, 478372886, 1915188093, 7831613468, 32674683984, 138871668314, 600140517762, 2631926843602, 11690520554421, 52498671870181, 237966449687118, 1087246253873875, 5001141997115010, 23137102115963262
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
rec:= (95+95*n)*a(n)+(-180-9*n)*a(n+1)+(-329-197*n)*a(n+2)+(369+144*n)*a(n+3)+(-117-36*n)*a(4+n)+(12+3*n)*a(n+5): f:= gfun:-rectoproc({rec,a(0)=1,a(1)=3,a(2)=10,a(3)=33,a(4)=110},a(n),remember): seq(f(n),n=0..100); # Robert Israel, Apr 28 2015
-
Mathematica
CoefficientList[Series[2*(3+x)/(6-17*x-9*x^2+x*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
Formula
G.f.: 1/(1-3*x-x*F(x)), where F(x) is the g.f. of the sequence A117641.
G.f.: 2*(3+x)/(6-17*x-9*x^2+x*sqrt(1-6*x+5*x^2)).
a(n) ~ 5^(n+3/2)/(98*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
From Robert Israel, Apr 28 2015 (Start):
G.f.: (6-x*sqrt(1-6*x+5*x^2)-17*x-9*x^2)/(6-36*x+42*x^2+38*x^3).
3*(-n+1)*a(n) +9*(4*n-7)*a(n-1) +9*(-16*n+39)*a(n-2) +(197*n-656)*a(n-3) +9*(n+15)*a(n-4) +95*(-n+4)*a(n-5)=0. (End)
Comments