A257378 Smallest odd number k such that k*n*2^n+1 is a prime number.
1, 5, 3, 3, 13, 3, 3, 9, 5, 13, 9, 3, 3, 5, 9, 7, 3, 3, 3, 5, 3, 7, 19, 5, 5, 33, 3, 7, 7, 9, 5, 15, 3, 21, 15, 7, 35, 89, 25, 15, 25, 49, 53, 45, 13, 15, 21, 31, 27, 3, 9, 33, 37, 23, 41, 41, 19, 9, 111, 7, 3, 89, 13, 39, 31, 17, 11, 101, 17, 37, 7, 51, 75
Offset: 1
Keywords
Examples
1*1*2^1+1=3 prime so a(1)=1. 1*2*2^2+1=9 composite, 3*2*2^2+1=25 composite, 5*2*2^2+1=41 prime so a(2)=5. 1*3*2^3+1=25 composite, 3*3*2^3=73 prime so a(3)=3.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Q:= proc(m) local k; for k from 1 by 2 do if isprime(k*m+1) then return k fi od end proc: seq(Q(n*2^n), n=1..100); # Robert Israel, Jan 05 2016
-
Mathematica
Table[k = 1; While[!PrimeQ[k*n*2^n + 1], k += 2]; k, {n, 73}] (* Michael De Vlieger, Apr 21 2015 *)
-
PARI
a(n) = k=1; while(!isprime(k*n*2^n+1), k+=2); k \\ Colin Barker, Apr 21 2015
-
PFGW
ABC2 $b*$a*2^$a+1 // {number_primes,$b,1} a: from 1 to 10000 b: from 1 to 100000 step 2 Charles R Greathouse IV, Apr 24 2015
Comments