cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257393 Primes which are not the sum of two or more consecutive nonprime numbers.

Original entry on oeis.org

2, 3, 7, 13, 47, 61, 73, 107, 167, 179, 313, 347, 421, 479, 719, 863, 1153, 1213, 1283, 1307, 1523, 3467, 3733, 4007, 4621, 4787, 5087, 5113, 5413, 7523, 7703, 9817, 10333, 12347, 12539, 13381, 17027, 18553, 19717, 19813, 23399, 26003, 31873, 36097, 38833
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 21 2015

Keywords

Comments

Numbers n such that A257392(n) = 0.

Examples

			2 and 3 are in this sequence because nonnegative nonprime(1) + nonnegative nonprime(2) = 0 + 1 = 1 < 2 and nonnegative nonprime(2) + nonnegative nonprime(3) =  1 + 4 = 5 > 3 where 2, 3 are primes.
		

Crossrefs

Programs

  • Maple
    N:= 5000: # to get all terms <= N
    Primes:= select(isprime,{2,seq(2*i+1, i=1..floor((N-1)/2))}):
    Nonprimes:= sort(convert({$1..N} minus Primes, list)):
    nnp:= nops(Nonprimes):
    PSums:= [0,op(ListTools[PartialSums](Nonprimes))]:
    A:= Primes:
    mA:= max(A):
    for i from 1 to nnp do
      for j from i+2 to nnp+1 while PSums[j] - PSums[i] <= mA do od;
      A:= A minus {seq(PSums[k]-PSums[i],k=i+2..j-1)};
    od od:
    A;
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list));  # Robert Israel, Apr 21 2015
  • Mathematica
    lim = 1000; s = {1}~Join~Select[Range@lim, CompositeQ]; Complement[Prime@ Range[PrimePi@ lim], DeleteDuplicates@ Sort@ Flatten[Plus @@@ Partition[s, #, 1] & /@ Range[lim - PrimePi@ lim]]] (* Michael De Vlieger, Apr 21 2015 *)

Extensions

a(7) - a(26) from Michael De Vlieger, Apr 21 2015
a(27) - a(45) from Robert Israel, Apr 21 2015