cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257398 Expansion of phi(-x^6)^2 / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 0, 1, 2, 0, 2, 0, 3, 2, 2, 3, 0, 2, 2, 2, 0, 0, 1, 0, 2, 2, 1, 4, 2, 4, 0, 0, 2, 0, 4, 1, 0, 0, 4, 2, 1, 0, 2, 2, 0, 0, 0, 2, 2, 4, 2, 1, 2, 4, 2, 2, 0, 1, 0, 0, 4, 0, 2, 4, 0, 0, 0, 2, 0, 2, 3, 0, 0, 2, 2, 2, 2, 3, 2, 0, 4, 0, 4, 2, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 21 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + x^7 + 2*x^8 + 2*x^10 + ...
G.f. = q + q^25 + q^49 + 2*q^73 + 2*q^97 + 3*q^121 + q^169 + 2*q^193 + ...
		

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] EllipticTheta[ 4, 0, x^6] ^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^4 / (eta(x + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of phi(x^3) * f(x, x^2) in powers of x where phi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
Expansion of q^(-1/24) * eta(q^2) * eta(q^6)^4 / (eta(q) * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [1, 0, 1, 0, 1, -4, 1, 0, 1, 0, 1, -2, ...].