A257399 Expansion of phi(x^3) * phi(-x^12) / chi(-x^4) in powers of x where phi(), chi() are Ramanujan theta functions.
1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x^3 + x^4 + 2*x^7 + x^8 + 2*x^11 + 2*x^12 + 2*x^16 + 3*x^20 + ... G.f. = q + 2*q^19 + q^25 + 2*q^43 + q^49 + 2*q^67 + 2*q^73 + 2*q^97 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^4, x^4] EllipticTheta[ 3, 0, x^3] EllipticTheta[ 4, 0, x^12], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^5 * eta(x^8 + A) / (eta(x^4 + A) * eta(x^3 + A)^2 * eta(x^24 + A)), n))};
Formula
Expansion of (phi(-x^24)^2 + 2 * x^3 * psi(-x^12)^2) / chi(-x^4) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/6) * eta(q^6)^5 * eta(q^8) / (eta(q^4) * eta(q^3)^2 * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 0, 0, 2, 1, 0, -3, 0, 0, 2, 0, 0, -2, 0, 0, 2, 0, 0, -3, 0, 1, 2, 0, 0, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 8^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A257400.
Comments