A257435 Decimal expansion of G(1/6), a generalized Catalan constant.
9, 0, 0, 4, 2, 4, 6, 0, 0, 3, 8, 9, 7, 0, 7, 7, 5, 7, 8, 5, 8, 8, 2, 7, 5, 8, 9, 0, 2, 9, 0, 4, 9, 4, 8, 5, 8, 2, 9, 9, 4, 3, 9, 5, 7, 6, 6, 6, 6, 1, 8, 7, 6, 5, 5, 9, 5, 1, 5, 7, 3, 1, 8, 3, 9, 1, 0, 5, 4, 4, 2, 0, 3, 6, 7, 5, 6, 5, 4, 7, 4, 9, 9, 6, 2, 3, 2, 3, 1, 5, 3, 0, 2, 5, 7, 1, 2, 4, 8, 2, 2, 8, 7, 8, 6
Offset: 0
Examples
0.900424600389707757858827589029049485829943957666618765595157318391...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- D. Borwein, J. M. Borwein, M. L. Glasser, J. G Wan, Moments of Ramanujan's Generalized Elliptic Integrals and Extensions of Catalan's Constant, 2010.
- D. Borwein, J. M. Borwein, M. L. Glasser, J. G Wan, Moments of Ramanujan's Generalized Elliptic Integrals and Extensions of Catalan's Constant, Journal of Mathematical Analysis and Applications, Volume 384, Issue 2, 15 December 2011, Pages 478-496.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); (3/4)*Sqrt(3)*Log(2); // G. C. Greubel, Aug 24 2018
-
Mathematica
RealDigits[(3/4)*Sqrt[3]*Log[2], 10, 105] // First N[Pi*HypergeometricPFQ[{1/3, 1/2, 2/3}, {1, 3/2}, 1]/4, 105] (* Vaclav Kotesovec, Apr 24 2015 *)
-
PARI
(3/4)*sqrt(3)*log(2) \\ G. C. Greubel, Aug 24 2018
Formula
G(s) = (Pi/4) * 3F2(1/2, 1/2-s, s+1/2; 1, 3/2; 1), with 2F1 the hypergeometric function.
G(s) = (1/(8*s))*(Pi + cos(Pi*s)*(psi(1/4 + s/2) - psi(3/4 + s/2))), where psi is the digamma function (PolyGamma).
G(1/6) = (3/4)*sqrt(3)*log(2).