cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257436 Decimal expansion of G(1/3), a generalized Catalan constant.

Original entry on oeis.org

8, 5, 5, 3, 8, 9, 2, 4, 5, 8, 3, 8, 5, 6, 4, 6, 4, 0, 9, 7, 2, 4, 8, 1, 0, 3, 6, 7, 4, 0, 4, 5, 6, 5, 5, 2, 2, 2, 6, 8, 3, 1, 1, 9, 7, 3, 1, 5, 5, 7, 3, 4, 8, 0, 3, 9, 8, 1, 4, 2, 0, 0, 4, 0, 4, 2, 5, 6, 2, 0, 1, 2, 9, 8, 6, 7, 7, 4, 5, 9, 7, 1, 5, 7, 0, 1, 5, 6, 6, 0, 3, 9, 8, 2, 9, 8, 2, 6, 5, 0, 5, 4, 6, 6, 6, 7, 5
Offset: 0

Views

Author

Jean-François Alcover, Apr 23 2015

Keywords

Examples

			0.855389245838564640972481036740456552226831197315573480398142...
		

Crossrefs

Cf. A006752 (G(0) = Catalan), A257435 (G(1/6)), A091648 (G(1/4)), A257437 (G(1/12)), A257438 (G(1/5)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (3/8)*Sqrt(3)*Log(2 + Sqrt(3)); // G. C. Greubel, Aug 24 2018
  • Mathematica
    RealDigits[(3/8)*Sqrt[3]*Log[2 + Sqrt[3]], 10, 107] // First
    N[Pi*HypergeometricPFQ[{1/6, 1/2, 5/6}, {1, 3/2}, 1]/4, 105] (* Vaclav Kotesovec, Apr 24 2015 *)
  • PARI
    (3/8)*sqrt(3)*log(2 + sqrt(3)) \\ G. C. Greubel, Aug 24 2018
    

Formula

G(s) = (Pi/4) * 3F2(1/2, 1/2-s, s+1/2; 1, 3/2; 1), with 2F1 the hypergeometric function.
G(s) = (1/(8*s))*(Pi + cos(Pi*s)*(psi(1/4+s/2) - psi(3/4+s/2))), where psi is the digamma function (PolyGamma).
G(1/3) = (3/8)*sqrt(3)*log(2 + sqrt(3)) = (3/4)*sqrt(3)*arccoth(sqrt(3)).