A257461 Let b_k=9...9 consist of k>0 9's. Then a(n) is the smallest k such that the concatenation prime(n)b_k is prime, or a(n)=0 if there is no such prime.
1, 0, 1, 1, 5, 1, 1, 1, 1, 2, 28, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 2, 90, 1, 1, 2, 8, 2, 1, 1, 2, 1, 1, 2, 1, 4, 6, 8, 3, 2, 3, 4, 1, 1, 5, 1, 5, 60, 1, 1, 5, 6, 1, 2, 1, 1, 2, 1, 10, 1, 1, 1, 5, 2, 1, 3, 4, 1, 1, 2, 4, 1, 3, 4, 3, 2, 1, 1, 2, 1, 6, 1, 5, 3
Offset: 1
Links
- Vladimir Shevelev and Robert G. Wilson v, Table of n, a(n) for n = 1..10000 with -1 for those entries where a(n) has not yet been found.
Programs
-
Mathematica
f[n_] := Block[{k = 1, p = Prime[n]}, While[ !PrimeQ[p*10^k + 10^k - 1], k++]; k]; f[2] = 0; Array[f, 86]
Formula
a(n)=k for the least k such that p(n)*10^k+10^k-1 is prime, where p(n) is the n_th prime.
Extensions
a(87) from Eric Chen, Apr 24 2015
Comments