A257479 Maximal kissing number in n dimensions: maximal number of unit spheres that can touch another unit sphere.
2, 6, 12, 24
Offset: 1
Examples
For a(2), the maximal number of pennies that can touch one penny is 6. For a(3), the most spheres that can simultaneously touch a central sphere of the same radius is 12.
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd. ed., Chap. 3, esp. pp. xxi, 23, etc.
- Musin, Oleg Rustumovich. "The problem of the twenty-five spheres." Russian Mathematical Surveys 58.4 (2003): 794-795.
Links
- Eiichi Bannai and N. J. A. Sloane, Uniqueness of certain spherical codes, Canad. J. Math. 33 (1981), no. 2, 437-449.
- J. Leech, The problem of the thirteen spheres, Math. Gaz., 40 (1956), 22-23.
- V. I. Levenshtein, On bounds for packings in n-dimensional Euclidean space, Dokl. Akad. Nauk., 245 (1979), 1299-1303; English translation in Soviet Math. Doklady, 20 (1979), 417-421.
- Hans D. Mittelmann and Frank Vallentin, High accuracy semidefinite programming bounds for kissing numbers, arXiv:0902.1105 [math.OC], 2009; Exp. Math. (2009), no. 19, 174-178.
- G. Nebe and N. J. A. Sloane, Table of highest kissing numbers known
- A. M. Odlyzko and N. J. A. Sloane, New bounds on the number of unit spheres that can touch a unit sphere in n dimensions, J. Combin. Theory Ser. A 26 (1979), no. 2, 210-214.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 21.
- Wikipedia, Kissing number problem
Crossrefs
Extensions
Entry revised by N. J. A. Sloane, May 08 2015
Comments