cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257488 Triangle, read by rows, T(n,k) = k*Sum_{i=0..n-k} C(2*i+2*k,i)*C(n-i-1,k-1)/(i+k) for 1 <= k <= n.

Original entry on oeis.org

1, 3, 1, 8, 6, 1, 22, 25, 9, 1, 64, 92, 51, 12, 1, 196, 324, 237, 86, 15, 1, 625, 1128, 996, 484, 130, 18, 1, 2055, 3934, 3966, 2377, 860, 183, 21, 1, 6917, 13812, 15335, 10744, 4845, 1392, 245, 24, 1, 23713, 48884, 58359, 46068, 24603, 8859, 2107, 316, 27, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Apr 26 2015

Keywords

Examples

			Triangle starts:
1;
3,   1;
8,   6,  1;
22, 25,  9,  1;
64, 92, 51, 12, 1;
		

Crossrefs

Cf. A014138.

Programs

  • Mathematica
    Flatten@ Table[k Sum[Binomial[2 i + 2 k, i] Binomial[n - i - 1, k - 1]/(i + k), {i, 0, n - k}], {n, 10}, {k, n}] (* Michael De Vlieger, Apr 27 2015 *)
  • Maxima
    T(n,k):=k*sum((binomial(2*i+2*k,i)*binomial(n-i-1,k-1))/(i+k),i,0,n-k);
    
  • PARI
    T(n,k)=k*sum(i=0,n-k,(binomial(2*i+2*k,i)*binomial(n-i-1,k-1))/(i+k))
    for(n=1,10,for(k=1,n,print1(T(n,k),", "))) \\ Derek Orr, Apr 27 2015

Formula

G.f.: 1/(1-(C(x)-1)/(1-x)*y)-1, where C(x) is g.f. of Catalan numbers (A000108).
T(n,n-1) = 3*(n-1) for n > 1. - Derek Orr, Apr 27 2015
T(n,n-2) = A062728(n-2) for n > 2. - Derek Orr, Apr 27 2015
T(n,1) = A014138(n). - Derek Orr, Apr 27 2015