A257488 Triangle, read by rows, T(n,k) = k*Sum_{i=0..n-k} C(2*i+2*k,i)*C(n-i-1,k-1)/(i+k) for 1 <= k <= n.
1, 3, 1, 8, 6, 1, 22, 25, 9, 1, 64, 92, 51, 12, 1, 196, 324, 237, 86, 15, 1, 625, 1128, 996, 484, 130, 18, 1, 2055, 3934, 3966, 2377, 860, 183, 21, 1, 6917, 13812, 15335, 10744, 4845, 1392, 245, 24, 1, 23713, 48884, 58359, 46068, 24603, 8859, 2107, 316, 27, 1
Offset: 1
Examples
Triangle starts: 1; 3, 1; 8, 6, 1; 22, 25, 9, 1; 64, 92, 51, 12, 1;
Crossrefs
Cf. A014138.
Programs
-
Mathematica
Flatten@ Table[k Sum[Binomial[2 i + 2 k, i] Binomial[n - i - 1, k - 1]/(i + k), {i, 0, n - k}], {n, 10}, {k, n}] (* Michael De Vlieger, Apr 27 2015 *)
-
Maxima
T(n,k):=k*sum((binomial(2*i+2*k,i)*binomial(n-i-1,k-1))/(i+k),i,0,n-k);
-
PARI
T(n,k)=k*sum(i=0,n-k,(binomial(2*i+2*k,i)*binomial(n-i-1,k-1))/(i+k)) for(n=1,10,for(k=1,n,print1(T(n,k),", "))) \\ Derek Orr, Apr 27 2015