A257517 Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at even level.
1, 0, 1, 0, 2, 2, 5, 8, 18, 30, 66, 120, 252, 484, 1005, 1984, 4110, 8278, 17150, 35024, 72748, 150012, 312642, 649424, 1358244, 2837484, 5954980, 12497616, 26313432, 55434248, 117062205, 247412928, 523881238, 1110335334, 2356819254, 5007428384, 10652412108, 22682131308, 48349084054, 103150869360, 220276819836
Offset: 0
Programs
-
Mathematica
CoefficientList[Series[(1-2*x^3-Sqrt[(1-2*x^3)*(1-4*x^2-2*x^3)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 27 2015 *)
Formula
G.f.: (1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3)))/(2*x^2).
D-finite with recurrence +(n+2)*(n^2-n+3)*a(n) +(n+1)*(n^2+1)*a(n-1) -4*(n-1)*(n^2-n+3)*a(n-2) +2*(-4*n^3+11*n^2-13*n+19)*a(n-3) -2*(2*n-7)*(n^2+1)*a(n-4) +4*(2*n-11)*(n^2-n+3)*a(n-5) +4*(3*n^3-21*n^2+12*n-34)*a(n-6) +4*(n-8)*(n^2+1)*a(n-7)=0. - R. J. Mathar, Jun 07 2016