A257520 Number of factorizations of m^2 into 2 factors, where m is a product of exactly n distinct primes and each factor is a product of n primes (counted with multiplicity).
1, 1, 2, 4, 10, 26, 71, 197, 554, 1570, 4477, 12827, 36895, 106471, 308114, 893804, 2598314, 7567466, 22076405, 64498427, 188689685, 552675365, 1620567764, 4756614062, 13974168191, 41088418151, 120906613076, 356035078102, 1049120176954, 3093337815410
Offset: 0
Keywords
Examples
a(4) = 10: (2*3*5*7)^2 = 44100 = 210*210 = 225*196 = 294*150 = 315*140 = 350*126 = 441*100 = 490*90 = 525*84 = 735*60 = 1225*36.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, [1, 1, 2][n+1], ((3*n^2-7*n+3)*a(n-1) +(n-1)*(n-3)*a(n-2) -3*(n-1)*(n-2)*a(n-3)) / (n*(n-2))) end: seq(a(n), n=0..40);
Comments