A257523 Number T(n,k) of equivalence classes of ways of placing k 4 X 4 tiles in an n X 7 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=4, 0<=k<=floor(n/4), read by rows.
1, 2, 1, 2, 1, 4, 1, 4, 1, 6, 6, 1, 6, 14, 1, 8, 28, 1, 8, 44, 1, 10, 66, 20, 1, 10, 90, 64, 1, 12, 120, 168, 1, 12, 152, 320, 1, 14, 190, 572, 72, 1, 14, 230, 896, 328, 1, 16, 276, 1360, 984, 1, 16, 324, 1920, 2264, 1, 18, 378, 2660, 4528, 272
Offset: 4
Examples
The first 9 rows of T(n,k) are: .\ k 0 1 2 3 n 4 1 2 5 1 2 6 1 4 7 1 4 8 1 6 6 9 1 6 14 10 1 8 28 11 1 8 44 12 1 10 66 20 13 1 10 90 64 14 1 12 120 168 15 1 12 152 320
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..860
- Christopher Hunt Gribble, C++ program
Crossrefs
Programs
-
PARI
T(n,k)={(4^k*binomial(n-3*k,k) + ((n%2==0||k%2==0)+(k%2==0)+(k==0)) * 4^((k+1)\2)*binomial((n-3*k-(k%2)-(n%2))/2,k\2))/4} for(n=4,15,for(k=0,(n\4), print1(T(n,k), ", "));print) \\ Andrew Howroyd, May 29 2017
Extensions
Terms a(24) and beyond by Andrew Howroyd, May 29 2017