A257541 The rank of the partition with Heinz number n.
0, 1, -1, 2, 0, 3, -2, 0, 1, 4, -1, 5, 2, 1, -3, 6, -1, 7, 0, 2, 3, 8, -2, 1, 4, -1, 1, 9, 0, 10, -4, 3, 5, 2, -2, 11, 6, 4, -1, 12, 1, 13, 2, 0, 7, 14, -3, 2, 0, 5, 3, 15, -2, 3, 0, 6, 8, 16, -1, 17, 9, 1, -5, 4, 2, 18, 4, 7, 1, 19, -3, 20, 10, 0, 5
Offset: 2
Keywords
Examples
a(24) = -2. Indeed, the partition corresponding to the Heinz number 24 = 2*2*2*3 is [1,1,1,2]; consequently, a(24)= 2 - 4 = -2.
References
- G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..10000
- FindStat, St000145: The Dyson rank of a partition
- FindStat, St000183: The side length of the Durfee square of an integer partition
Crossrefs
Programs
-
Maple
with(numtheory): a := proc(n) options operator, arrow: pi(max(factorset(n)))-bigomega(n) end proc: seq(a(n), n = 2 .. 120);
-
Mathematica
Table[PrimePi@ FactorInteger[n][[-1, 1]] - PrimeOmega@ n, {n, 2, 76}] (* Michael De Vlieger, May 09 2015 *)
Formula
a(n) = q(largest prime factor of n) - bigomega(n), where q(p) is defined by q-th prime = p while bigomega(n) is the number of prime factors of n, including multiplicities.
Comments