A257545 a(0) = 2, a(n) = smallest prime p such that none of p - 1, p - 2,... p - n are squarefree.
2, 5, 29, 101, 5051, 5051, 73453, 671353, 130179187, 211014929, 262315477, 3639720053
Offset: 0
Examples
a(3) = 101 because 101 is prime and none of 101 - 1 = 100, 101 - 2 = 99, and 101 - 3 = 98 are squarefree.
Crossrefs
Cf. A257108.
Programs
-
Maple
p:= 2: A[0]:= 2: m:= 0: while p < 10^6 do p:= nextprime(p); for k from 1 while not numtheory:-issqrfree(p-k) do od: if k > m+1 then for j from m+1 to k-1 do A[j]:= p od: m:= k-1; fi od: seq(A[i],i=0..m); # Robert Israel, Apr 29 2015
-
PARI
a(n)=forprime(p=2,,for(k=1,n,if(issquarefree(p-k), next(2))); return(p)) \\ Charles R Greathouse IV, Apr 29 2015
Formula
a(n) << A002110(n)^10 by the CRT and Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Apr 29 2015
Extensions
a(9)-a(11) from Charles R Greathouse IV, Apr 29 2015