cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318959 Primes p (> 2) such that p - 2 and p - 1 are nonsquarefree.

Original entry on oeis.org

29, 101, 127, 137, 149, 173, 277, 281, 317, 353, 389, 461, 509, 541, 569, 577, 641, 677, 727, 821, 857, 877, 929, 977, 1109, 1129, 1181, 1217, 1277, 1289, 1361, 1423, 1433, 1451, 1613, 1667, 1721, 1777, 1861, 1877, 1901, 1913, 1973, 2081, 2153, 2297, 2333, 2351
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2018

Keywords

Examples

			21 (= 23 - 2) is squarefree. So 23 is not a term.
27 = 3^3 and 28 = 2^2*7. So 29 is a term.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(3, 2500)| not IsSquarefree(p-2) and not IsSquarefree(p-1)]; // Vincenzo Librandi, Sep 06 2018
  • Mathematica
    Select[Prime[Range[500]], !SquareFreeQ[# - 2] && !SquareFreeQ[# - 1] &] (* Vincenzo Librandi, Sep 06 2018 *)
  • PARI
    forprime(p=2, 1e4, if(!issquarefree(p-1)&&!issquarefree(p-2), print1(p, ", "))); \\ Altug Alkan, Sep 06 2018
    

A319049 Primes p such that none of p - 1, p - 2 and p - 3 are squarefree.

Original entry on oeis.org

101, 127, 353, 727, 1277, 1423, 1451, 1667, 2153, 2351, 2647, 3187, 3251, 3511, 3701, 3719, 3727, 4421, 4951, 5051, 5393, 5527, 6427, 6653, 6959, 7517, 7867, 8527, 9127, 9551, 9803, 9851, 10243, 10253, 10487, 10831, 11273, 11351, 11777, 11827, 12007, 12251, 12277
Offset: 1

Views

Author

Seiichi Manyama, Sep 08 2018

Keywords

Comments

If p is a term, so that there are primes q,r,s such that q^2|p-3, r^2|p-2 and s^2|p-1, then the sequence includes all primes == p (mod q^2*r^2*s^2). In particular, the sequence is infinite, and a(n)/(n*log(n)) is bounded above and below by constants. - Robert Israel, Sep 09 2018

Examples

			98 = 2*7^2, 99 = 3^2*11 and 100 = 2^2*5^2. So 101 is a term.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(13000) | not IsSquarefree(p-1) and not IsSquarefree(p-2) and not IsSquarefree(p-3)]; // Vincenzo Librandi, Sep 17 2018
  • Maple
    Res:= NULL: count:= 0:
    p:= 1;
    while count < 100 do
      p:= nextprime(p);
      if not ormap(numtheory:-issqrfree, [p-1,p-2,p-3]) then
        count:= count+1; Res:= Res, p
      fi
    od:
    Res; # Robert Israel, Sep 09 2018
  • Mathematica
    Select[Prime[Range[2000]], !SquareFreeQ[# - 1] && !SquareFreeQ[# - 2] && !SquareFreeQ[# - 3]&] (* Jean-François Alcover, Sep 17 2018 *)
    Select[Prime[Range[1500]],NoneTrue[#-{1,2,3},SquareFreeQ]&] (* Harvey P. Dale, Apr 11 2022 *)
  • PARI
    isok(p) = isprime(p) && !issquarefree(p-1) && !issquarefree(p-2) && !issquarefree(p-3); \\ Michel Marcus, Sep 09 2018
    
Showing 1-2 of 2 results.