cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318959 Primes p (> 2) such that p - 2 and p - 1 are nonsquarefree.

Original entry on oeis.org

29, 101, 127, 137, 149, 173, 277, 281, 317, 353, 389, 461, 509, 541, 569, 577, 641, 677, 727, 821, 857, 877, 929, 977, 1109, 1129, 1181, 1217, 1277, 1289, 1361, 1423, 1433, 1451, 1613, 1667, 1721, 1777, 1861, 1877, 1901, 1913, 1973, 2081, 2153, 2297, 2333, 2351
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2018

Keywords

Examples

			21 (= 23 - 2) is squarefree. So 23 is not a term.
27 = 3^3 and 28 = 2^2*7. So 29 is a term.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(3, 2500)| not IsSquarefree(p-2) and not IsSquarefree(p-1)]; // Vincenzo Librandi, Sep 06 2018
  • Mathematica
    Select[Prime[Range[500]], !SquareFreeQ[# - 2] && !SquareFreeQ[# - 1] &] (* Vincenzo Librandi, Sep 06 2018 *)
  • PARI
    forprime(p=2, 1e4, if(!issquarefree(p-1)&&!issquarefree(p-2), print1(p, ", "))); \\ Altug Alkan, Sep 06 2018
    

A319051 Primes p such that none of p + 1, p + 2 and p + 3 are squarefree.

Original entry on oeis.org

47, 97, 241, 349, 547, 773, 1249, 1447, 1663, 1847, 1861, 2347, 2887, 3049, 3547, 3607, 3623, 3697, 4111, 4373, 4597, 5237, 5273, 5749, 6173, 6857, 7549, 8467, 8647, 8719, 9161, 9349, 9547, 9749, 11149, 11321, 11447, 12049, 12473, 12689, 12823, 12941, 13147, 13291
Offset: 1

Views

Author

Seiichi Manyama, Sep 08 2018

Keywords

Examples

			48 = 2^4*3, 49 = 7^2 and 50 = 2*5^2. So 47 is a term.
98 = 2*7^2, 99 = 3^2*11 and 100 = 2^2*5^2. So 97 is a term.
		

Crossrefs

Programs

  • PARI
    forprime(p=2, 1e5, if(!issquarefree(p+1) && !issquarefree(p+2) && !issquarefree(p+3), print1(p", ")))
Showing 1-2 of 2 results.