A257574 Continued square root map applied to the sequence of positive even numbers, (2, 4, 6, 8, ...).
2, 1, 5, 8, 4, 7, 6, 8, 7, 2, 3, 1, 1, 0, 3, 9, 7, 6, 5, 6, 5, 5, 8, 5, 3, 4, 7, 9, 8, 0, 7, 0, 2, 5, 2, 4, 1, 6, 6, 9, 6, 9, 4, 4, 4, 0, 3, 5, 4, 2, 8, 6, 6, 7, 0, 3, 7, 5, 5, 0, 9, 6, 3, 4, 2, 1, 9, 4, 6, 2, 4, 0, 7, 4, 5, 4, 9, 7, 7, 1, 1, 8, 5, 9, 9, 8, 0
Offset: 1
Examples
sqrt(2 + sqrt(4 + sqrt(6 + sqrt(8 + ...)))) = 2.1584768723110397656558534...
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..400
- A. Herschfeld, On Infinite Radicals, Amer. Math. Monthly, 42 (1935), 419-429.
- Herman P. Robinson, The CSR Function, Popular Computing (Calabasas, CA), Vol. 4 (No. 35, Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.
Programs
-
PARI
(CSR(v,s)=forstep(i=#v,1,-1,s=sqrt(v[i]+s));s); t=0;for(N=5,oo,(t==t=Str(CSR([1..2*N]*2)))&&break;print(2*N": "t)) \\ Allows to see the convergence, which is reached when length of vector ~ precision [given as number of digits]. Using Str() to avoid infinite loop when internal representation is "fluctuating". - M. F. Hasler, May 04 2018
Extensions
a(27)-a(87) from Hiroaki Yamanouchi, May 03 2015
Edited by M. F. Hasler, May 01 2018
Comments