A257597 Irregular triangle read by rows: coefficients of polynomials V_n(x), highest degree terms first.
1, 1, -1, 1, -3, 1, -7, 1, 1, -15, 5, 1, -31, 17, -1, 1, -63, 49, -7, 1, -127, 129, -31, 1, 1, -255, 321, -111, 9, 1, -511, 769, -351, 49, -1, 1, -1023, 1793, -1023, 209, -11, 1, -2047, 4097, -2815, 769, -71, 1, 1, -4095, 9217, -7423, 2561, -351, 13, 1, -8191, 20481, -18943, 7937, -1471, 97, -1
Offset: 1
Examples
Triangle begins: 1, 1, -1, 1, -3, 1, -7, 1, 1, -15, 5, 1, -31, 17, -1, 1, -63, 49, -7, 1, -127, 129, -31, 1, 1, -255, 321, -111, 9, 1, -511, 769, -351, 49, -1, 1, -1023, 1793, -1023, 209, -11, 1, -2047, 4097, -2815, 769, -71, 1, 1, -4095, 9217, -7423, 2561, -351, 13, 1, -8191, 20481, -18943, 7937, -1471, 97, -1, ...
Links
- K. Dilcher, K. B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23.
Crossrefs
A210197 is an essentially identical triangle.
Programs
-
PARI
tabf(nn) = {pp = 1; p = x; print(polcoeff(p, poldegree(p))); for (n=1, nn, np = 2*x*p-pp-x^(n+1); forstep (j=poldegree(np), 0, -1, if (c = polcoeff(np, j), print1(c, ", "));); pp = p; p = np; print(););} \\ Michel Marcus, Aug 22 2015