A257598 Triangle read by rows: coefficients of polynomials W_n(x), highest degree terms first.
1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 8, 1, 1, 1, 16, -4, 1, 1, 1, 1, 32, -16, 2, 1, 1, 1, 1, 64, -48, 8, 1, 1, 1, 1, 1, 128, -128, 32, 1, 1, 1, 1, 1, 256, -320, 112, -8, 1, 1, 1, 1, 1, 1, 512, -768, 352, -48, 2, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
Triangle of coefficients begins: 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 8, 1, 1, 1, 16, -4, 1, 1, 1, 1, 32, -16, 2, 1, 1, 1, 1, 64, -48, 8, 1, 1, 1, 1, 1, 128, -128, 32, 1, 1, 1, 1, 1, 256, -320, 112 -8, 1, 1, 1, 1, 1, 1, 512, -768, 352 -48, 2, 1, 1, 1, 1, 1, 1, ... The actual polynomials are: 0 1 1 x^2 + 1 2 2x^4 + x^2 + 1 3 4x^6 + x^4 + x^2 + 1 4 8x^8 + x^4 + x^2 + 1 5 16x^10 - 4x^8 + x^6 + x^4 + x^2 + 1 6 32x^12 - 16x^10 + 2x^8 + x^6 + x^4 + x^2 + 1 7 64x^14 - 48x^12 + 8x^10 + x^8 + x^6 + x^4 + x^2 + 1 8 128x^16 - 128x^14 + 32x^12 + x^8 + x^6 + x^4 + x^2 + 1 9 256x^18 - 320x^16 + 112x^14 - 8x^12 + x^10 + x^8 + x^6 + x^4 + x^2 + 1 10 512x^20 - 768x^18 + 352x^16 - 48x^14 + 2x^12 + x^10 + x^8 + x^6 + x^4 + x^2 + 1 ...
Links
- K. Dilcher, K. B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23.
Crossrefs
Cf. A257597.
Programs
-
PARI
tabf(nn) = {pp = 1; p = x; for (n=1, nn, np = 2*x*p-pp-x^(n+1); w = p^2 - pp*np; forstep (j=poldegree(w), 0, -1, if (c = polcoeff(w, j), print1(c, ", "));); pp = p; p = np; print(););} \\ Michel Marcus, Aug 22 2015
Formula
W(n) = V(n+1)^2 - V(n)*V(n+2) where V(n) are the polynomials defined in A257597. - Michel Marcus, Aug 22 2015
Extensions
One typo in data corrected by Michel Marcus, Aug 22 2015