A257616 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 6*x + 2.
1, 2, 2, 4, 32, 4, 8, 312, 312, 8, 16, 2656, 8736, 2656, 16, 32, 21664, 175424, 175424, 21664, 32, 64, 174336, 3019200, 7016960, 3019200, 174336, 64, 128, 1397120, 47847552, 218838400, 218838400, 47847552, 1397120, 128, 256, 11182592, 722956288, 5907889664, 11379596800, 5907889664, 722956288, 11182592, 256
Offset: 0
Examples
Triangle begins as: 1; 2, 2; 4, 32, 4; 8, 312, 312, 8; 16, 2656, 8736, 2656, 16; 32, 21664, 175424, 175424, 21664, 32; 64, 174336, 3019200, 7016960, 3019200, 174336, 64; 128, 1397120, 47847552, 218838400, 218838400, 47847552, 1397120, 128;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; Table[T[n,k,6,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
-
Sage
def T(n,k,a,b): # A257610 if (k<0 or k>n): return 0 elif (n==0): return 1 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) flatten([[T(n,k,6,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
Formula
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 6*x + 2.
Sum_{k=0..n} T(n, k) = A049308(n).
From G. C. Greubel, Mar 21 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 6, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = (2^n/3)*(2^(2*n+1) - (3*n+2)). (End)