cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257620 Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 3*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 36, 9, 27, 297, 297, 27, 81, 2106, 5346, 2106, 81, 243, 13851, 73386, 73386, 13851, 243, 729, 87480, 868239, 1761264, 868239, 87480, 729, 2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187, 6561, 3293622, 95843088, 578903274, 1024762590, 578903274, 95843088, 3293622, 6561
Offset: 0

Views

Author

Dale Gerdemann, May 09 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,      3,        9,         27,           81,            243, ...;
    3,     36,      297,       2106,        13851,          87480, ...;
    9,    297,     5346,      73386,       868239,        9388791, ...;
   27,   2106,    73386,    1761264,     34158753,      578903274, ...;
   81,  13851,   868239,   34158753,   1024762590,    25791697782, ...;
  243,  87480,  9388791,  578903274,  25791697782,   928501120152, ...;
  729, 540189, 95843088, 8959544136, 575025893586, 28788563928042, ...;
Triangle T(n,k) begins as:
     1;
     3,      3;
     9,     36,       9;
    27,    297,     297,       27;
    81,   2106,    5346,     2106,       81;
   243,  13851,   73386,    73386,    13851,     243;
   729,  87480,  868239,  1761264,   868239,   87480,    729;
  2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Magma
    A257620:= func< n,k | 3^n*EulerianNumber(n+1, k) >;
    [A257620(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 17 2025
    
  • Mathematica
    t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
    T[n_, k_, p_, q_]= t[n-k, k, p, q];
    Table[T[n,k,3,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
  • Python
    from sage.all import *
    from sage.combinat.combinat import eulerian_number
    def A257620(n,k): return pow(3,n)*eulerian_number(n+1,k)
    print(flatten([[A257620(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025
  • Sage
    @CachedFunction
    def t(n,k,p,q):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
    def A257620(n,k): return t(n-k,k,3,3)
    flatten([[A257620(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022
    

Formula

T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 3*n + 3.
Sum_{k=0..n} T(n, k) = A034001(n).
From G. C. Greubel, Feb 28 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)
T(n, k) = 3^n*A008292(n, k). - G. C. Greubel, Jan 17 2025