A257620 Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 3*n + 3.
1, 3, 3, 9, 36, 9, 27, 297, 297, 27, 81, 2106, 5346, 2106, 81, 243, 13851, 73386, 73386, 13851, 243, 729, 87480, 868239, 1761264, 868239, 87480, 729, 2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187, 6561, 3293622, 95843088, 578903274, 1024762590, 578903274, 95843088, 3293622, 6561
Offset: 0
Examples
Array t(n,k) begins as: 1, 3, 9, 27, 81, 243, ...; 3, 36, 297, 2106, 13851, 87480, ...; 9, 297, 5346, 73386, 868239, 9388791, ...; 27, 2106, 73386, 1761264, 34158753, 578903274, ...; 81, 13851, 868239, 34158753, 1024762590, 25791697782, ...; 243, 87480, 9388791, 578903274, 25791697782, 928501120152, ...; 729, 540189, 95843088, 8959544136, 575025893586, 28788563928042, ...; Triangle T(n,k) begins as: 1; 3, 3; 9, 36, 9; 27, 297, 297, 27; 81, 2106, 5346, 2106, 81; 243, 13851, 73386, 73386, 13851, 243; 729, 87480, 868239, 1761264, 868239, 87480, 729; 2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A257620:= func< n,k | 3^n*EulerianNumber(n+1, k) >; [A257620(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 17 2025
-
Mathematica
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]]; T[n_, k_, p_, q_]= t[n-k, k, p, q]; Table[T[n,k,3,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
-
Python
from sage.all import * from sage.combinat.combinat import eulerian_number def A257620(n,k): return pow(3,n)*eulerian_number(n+1,k) print(flatten([[A257620(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025
-
Sage
@CachedFunction def t(n,k,p,q): if (n<0 or k<0): return 0 elif (n==0 and k==0): return 1 else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q) def A257620(n,k): return t(n-k,k,3,3) flatten([[A257620(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022
Formula
T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 3*n + 3.
Sum_{k=0..n} T(n, k) = A034001(n).
From G. C. Greubel, Feb 28 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)
T(n, k) = 3^n*A008292(n, k). - G. C. Greubel, Jan 17 2025