A257621 Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 4*n + 3.
1, 3, 3, 9, 42, 9, 27, 393, 393, 27, 81, 3156, 8646, 3156, 81, 243, 23631, 142446, 142446, 23631, 243, 729, 171006, 2015895, 4273380, 2015895, 171006, 729, 2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187, 6561, 8584872, 320039388, 2136524184, 3891302790, 2136524184, 320039388, 8584872, 6561
Offset: 0
Examples
Array t(n,k) begins as: 1, 3, 9, 27, 81, ...; 3, 42, 393, 3156, 23631, ...; 9, 393, 8646, 142446, 2015895, ...; 27, 3156, 142446, 4273380, 102402705, ...; 81, 23631, 2015895, 102402705, 3891302790, ...; 243, 171006, 26107983, 2136524184, 123074809242, ...; 729, 1216725, 320039388, 40688926236, 3437022383970, ...; Triangle T(n,k) begins as: 1; 3, 3; 9, 42, 9; 27, 393, 393, 27; 81, 3156, 8646, 3156, 81; 243, 23631, 142446, 142446, 23631, 243; 729, 171006, 2015895, 4273380, 2015895, 171006, 729; 2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]]; T[n_, k_, p_, q_]= t[n-k, k, p, q]; Table[T[n,k,4,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
-
Sage
@CachedFunction def t(n,k,p,q): if (n<0 or k<0): return 0 elif (n==0 and k==0): return 1 else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q) def A257621(n,k): return t(n-k,k,4,3) flatten([[A257621(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022
Formula
T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 4*n + 3.
Sum_{k=0..n} T(n, k) = A000407(n).
From G. C. Greubel, Mar 01 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)