A257622 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 4.
1, 4, 4, 16, 56, 16, 64, 552, 552, 64, 256, 4696, 11040, 4696, 256, 1024, 36968, 171448, 171448, 36968, 1024, 4096, 278232, 2305968, 4457648, 2305968, 278232, 4096, 16384, 2037736, 28346088, 94844912, 94844912, 28346088, 2037736, 16384
Offset: 0
Examples
Triangle begins as: 1; 4, 4; 16, 56, 16; 64, 552, 552, 64; 256, 4696, 11040, 4696, 256; 1024, 36968, 171448, 171448, 36968, 1024; 4096, 278232, 2305968, 4457648, 2305968, 278232, 4096; 16384, 2037736, 28346088, 94844912, 94844912, 28346088, 2037736, 16384;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; Table[T[n,k,3,4], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
Sage
def T(n,k,a,b): # A257622 if (k<0 or k>n): return 0 elif (n==0): return 1 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) flatten([[T(n,k,3,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
Formula
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 4.
Sum_{k=0..n} T(n, k) = A051605(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 3, and b = 4. - G. C. Greubel, Mar 20 2022