A257636 Numbers n such that the base 10 reversals of n and n+1 are both prime.
2, 13, 16, 30, 31, 34, 37, 70, 73, 91, 97, 106, 112, 118, 124, 130, 133, 145, 151, 166, 181, 199, 300, 310, 346, 358, 361, 364, 370, 376, 382, 388, 391, 700, 709, 721, 727, 730, 739, 745, 751, 754, 757, 760, 763, 775, 778, 784, 787, 790, 904, 907, 916, 919
Offset: 1
Examples
13 is in the sequence because both 31 and 41 are prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Math StackExchange, Consecutive numbers where their revers numbers are primes
Programs
-
Maple
revdigs:= proc(n) option remember; local x; x:= n mod 10; x*10^ilog10(n)+revdigs((n-x)/10); end proc: for i from 0 to 9 do revdigs(i):= i od: Rprimes:= select(isprime@revdigs, [$1..10^4]): Rprimes[select(t -> Rprimes[t+1]-Rprimes[t]=1, [$1..nops(Rprimes)-1])]; # Robert Israel, Nov 04 2015
-
Mathematica
SequencePosition[Table[If[PrimeQ[IntegerReverse[n]],1,0],{n,1000}],{1,1}][[;;,1]] (* Harvey P. Dale, Jan 07 2024 *)
-
PARI
for(n=1, 1e3, if(isprime(eval(concat(Vecrev(Str(n))))) && isprime(eval(concat(Vecrev(Str(n+1))))), print1(n, ", "))) \\ Altug Alkan, Nov 04 2015
Comments