A257640 Expansion of psi(x)^2 / phi(-x^3) in powers of x where phi(), psi() are Ramanujan theta functions.
1, 2, 1, 4, 6, 2, 11, 14, 4, 24, 30, 10, 47, 58, 18, 88, 108, 32, 156, 188, 57, 268, 318, 94, 444, 522, 152, 716, 834, 244, 1129, 1308, 378, 1744, 2010, 576, 2652, 3038, 870, 3968, 4524, 1288, 5857, 6650, 1884, 8540, 9660, 2730, 12312, 13878, 3906, 17572
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + x^2 + 4*x^3 + 6*x^4 + 2*x^5 + 11*x^6 + 14*x^7 + 4*x^8 + ... G.f. = q + 2*q^5 + q^9 + 4*q^13 + 6*q^17 + 2*q^21 + 11*q^25 + 14*q^29 + ...
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 3, 2nd equation.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (1/4) x^(-1/4) EllipticTheta[ 2, 0, x^(1/2)]^2 / EllipticTheta[ 4, 0, x^3], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A) / (eta(x + A)^2 * eta(x^3 + A)^2), n))};
-
PARI
q='q+O('q^99); Vec(eta(q^2)^4*eta(q^6)/(eta(q)^2*eta(q^3)^2)) \\ Altug Alkan, Apr 21 2018
Comments