cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257640 Expansion of psi(x)^2 / phi(-x^3) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 1, 4, 6, 2, 11, 14, 4, 24, 30, 10, 47, 58, 18, 88, 108, 32, 156, 188, 57, 268, 318, 94, 444, 522, 152, 716, 834, 244, 1129, 1308, 378, 1744, 2010, 576, 2652, 3038, 870, 3968, 4524, 1288, 5857, 6650, 1884, 8540, 9660, 2730, 12312, 13878, 3906, 17572
Offset: 0

Views

Author

Michael Somos, Nov 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + 4*x^3 + 6*x^4 + 2*x^5 + 11*x^6 + 14*x^7 + 4*x^8 + ...
G.f. = q + 2*q^5 + q^9 + 4*q^13 + 6*q^17 + 2*q^21 + 11*q^25 + 14*q^29 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 3, 2nd equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/4) x^(-1/4) EllipticTheta[ 2, 0, x^(1/2)]^2 / EllipticTheta[ 4, 0, x^3], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A) / (eta(x + A)^2 * eta(x^3 + A)^2), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q^2)^4*eta(q^6)/(eta(q)^2*eta(q^3)^2)) \\ Altug Alkan, Apr 21 2018

Formula

Expansion of q^(-1/4) * eta(q^2)^4 * eta(q^6) / (eta(q)^2 * eta(q^3)^2) in powers of q.
Euler transform of period 6 sequence [ 2, -2, 4, -2, 2, -1, ...].
a(n) = A053270(n) unless n == 2 (mod 3). a(3*n) = A053270(3*n) - 2 * A256209(n).