cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258154 Least k such that k*2^m - 1 has a covering set of modulus 2*n, or 0 if no such value exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 509203, 0, 0, 0, 0, 0, 777149, 0, 0, 0, 0, 0, 10157893, 0, 0, 0, 0, 0, 60014203, 0, 200883553191612793, 0, 0, 0, 7106977, 0, 0, 0
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 05 2015

Keywords

Crossrefs

A270271 Odd numbers n such that for every k >= 1, n*2^k + 1 has a divisor in the set {3, 5, 17, 257, 641, 65537, 6700417}.

Original entry on oeis.org

201446503145165177, 1007236913771681629, 1697906240793858917, 2331023822106839599, 2935363331541925531, 3367034409844073483, 3914042604075779837, 4863495246870308311, 5036162578625852633, 5590196669446332863, 6705290764721718679, 7284449444083822547
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 14 2016

Keywords

References

  • M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, pp. 72-73.

Crossrefs

Cf. A257647. Subsequence of A076336.

Programs

  • Magma
    lst:=[]; e:=2^64; P:=PrimeDivisors(e-1); C:=[1, 1, 1, 1, 1, 1, 33]; Pr:=&*[P[i]: i in [1..#P]]; S:=CRT([Modexp(2, C[i], P[i]): i in [1..#C]], P); for t in [1..33] do a:=S+Pr; g:=Gcd(a, e); S:=Floor(a/g); Append(~lst, S); end for; Sort(lst)[1..12];

Formula

a(n) = a(n-64) + 2*(2^64-1) for n > 64.

A289110 a(n) = number of covering sets of modulus 2*n for Sierpiński/Riesel numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 23, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 24 2017

Keywords

Comments

a(36) >= 93.
Note that it is not true that a(n) = 0 unless n is a multiple of 6. For example, a(40) = 1.

Crossrefs

Showing 1-3 of 3 results.