A257651 Expansion of chi(x)^2 * f(-x^6)^3 in powers of x where chi(), f() are Ramanujan theta functions.
1, 2, 1, 2, 4, 4, 2, 0, 6, 6, 1, 4, 6, 8, 2, 0, 7, 6, 4, 6, 8, 8, 4, 0, 10, 8, 2, 6, 10, 12, 0, 0, 9, 14, 6, 6, 12, 8, 6, 0, 10, 12, 1, 10, 14, 8, 4, 0, 16, 14, 6, 8, 8, 16, 8, 0, 12, 14, 2, 10, 12, 16, 0, 0, 20, 10, 7, 8, 20, 20, 6, 0, 10, 16, 4, 10, 20, 12
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 2*x^6 + 6*x^8 + 6*x^9 + ... G.f. = q^2 + 2*q^5 + q^8 + 2*q^11 + 4*q^14 + 4*q^17 + 2*q^20 + 6*q^26 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^2 QPochhammer[ x^6]^3, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)^2), n))};
Formula
Expansion of phi(x^3) * f(x, x^5)^2 in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of phi(x) * c(x^2) / 3 in powers of x where phi() is a Ramanujan theta function and c() is a cubic AGM theta function.
Expansion of q^(-2/3) * eta(q^2)^4 * eta(q^6)^3 / (eta(q)^2 * eta(q^4)^2) in powers of q.
Euler transform of period 12 sequence [ 2, -2, 2, 0, 2, -5, 2, 0, 2, -2, 2, -3, ...].
Comments