A257662 Least prime q such that p(q*n) is prime, where p(.) is the partition function given by A000041.
2, 2, 2, 47, 1481, 31, 11, 557, 277, 1847, 7, 3, 1861, 47, 1451, 557, 1429, 2, 18367, 2069, 13411, 463, 26731, 7, 50119, 61, 101, 877, 29, 11261, 2971, 421, 298589, 32633, 31, 55933, 5521, 7307, 22349, 11, 641, 13, 47881, 3, 2309, 51673, 94309, 186679, 136207, 1301
Offset: 1
Keywords
Examples
a(1) = 2 since p(2*1) = 2 is prime. a(4) = 47 since 47 and p(47*4) = p(188) = 1398341745571 are both prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..88
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
Do[k=0;Label[bb];k=k+1;If[PrimeQ[PartitionsP[Prime[k]*n]],Goto[aa],Goto[bb]]; Label[aa];Print[n, " ", Prime[k]];Continue,{n,1,50}]
-
PARI
a(n)={my(r=1); while(!isprime(numbpart(prime(r)*n)), r++); return(prime(r));} main(size)={return(vector(size,n,a(n)));} /* Anders Hellström, Jul 12 2015 */
Comments