A257709 Numbers n such that T(n) + T(n+1) + ... + T(n+26) is a square, where T = A000217 (triangular numbers).
8, 14, 39, 53, 103, 112, 206, 264, 509, 647, 1141, 1230, 2160, 2734, 5159, 6525, 11415, 12296, 21502, 27184, 51189, 64711, 113117, 121838, 212968, 269214, 506839, 640693, 1119863, 1206192, 2108286, 2665064, 5017309, 6342327, 11085621, 11940190, 20870000
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,10,-10,0,0,0,0,-1,1).
Crossrefs
Programs
-
Magma
I:=[8,14,39,53,103,112,206,264,509,647,1141,1230, 2160]; [n le 13 select I[n] else Self(n-1)+10*Self(n-6)-10*Self(n-7)-Self(n-12)+Self(n-13): n in [1..40]]; // Vincenzo Librandi, May 05 2015
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 0, 10, -10, 0, 0, 0, 0, -1, 1}, {8, 14, 39, 53, 103, 112, 206, 264, 509, 647, 1141, 1230, 2160}, 50] (* Vincenzo Librandi, May 05 2015 *) Position[Total/@Partition[Accumulate[Range[70000]],27,1],?(IntegerQ[ Sqrt[ #]]&)]//Flatten (* The program generates the first 22 terms of the sequence. To generate more, increase the Range constant but the program may take a long time to run. *) (* _Harvey P. Dale, Jul 27 2021 *)
-
PARI
Vec(x*(2*x^12+x^11+6*x^10+2*x^9+5*x^8+2*x^7-14*x^6-9*x^5-50*x^4-14*x^3-25*x^2-6*x-8) / ((x-1)*(x^12-10*x^6+1)) + O(x^100))
Formula
G.f.: x*(2*x^12+x^11+6*x^10+2*x^9+5*x^8+2*x^7-14*x^6-9*x^5-50*x^4-14*x^3-25*x^2-6*x-8) / ((x-1)*(x^12-10*x^6+1)).
Comments