A257713 Triangular numbers (A000217) that are the sum of ten consecutive triangular numbers.
1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485, 15054681960, 60093684540, 296985006165, 4392693942120, 21708840917445, 86655051404085, 428252172907560, 6334261618255845, 31304133548245020, 124956524030977320, 617539336347666645
Offset: 1
Keywords
Examples
1485 is in the sequence because T(54) = 1485 = 78+91+105+120+136+153+171+190+210+231 = T(12)+ ... +T(21).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1442,-1442,0,0,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1, 0, 0, 1442, -1442, 0, 0, -1, 1}, {1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
-
PARI
Vec(-15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)) + O(x^100))
Formula
G.f.: -15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)).