A257729 Permutation of natural numbers: a(1)=1; a(prime(n)) = oddprime(a(n)), a(composite(n)) = not_an_oddprime(1+a(n)).
1, 3, 7, 2, 19, 6, 5, 12, 4, 28, 71, 10, 17, 9, 20, 8, 13, 40, 41, 95, 16, 26, 11, 15, 30, 14, 21, 56, 109, 57, 359, 125, 25, 38, 18, 24, 31, 44, 22, 32, 61, 77, 29, 143, 78, 445, 73, 162, 36, 54, 27, 35, 23, 45, 62, 33, 46, 84, 43, 104, 179, 42, 185, 105, 545, 98, 181, 208, 51, 75, 503, 39, 59, 50, 34, 63, 85, 48, 103, 64, 114, 60, 37
Offset: 1
Keywords
Examples
As an initial value we have a(1) = 1. 2 is the first prime (= A000040(1)), so we take the a(1)-th odd prime, A065091(1) = 3, thus a(2) = 3. 3 is the second prime, thus we take a(2)-th odd prime, A065091(3) = 7, thus a(3) = 7. 4 is the first composite, thus we take a(1)-th number larger than one which is not an odd prime, and that is A065090(1+1) = 2, thus a(4) = 2. 5 is the third prime, thus we take a(3)-th odd prime, which is A065091(7) = 19, thus a(5) = 19.
Links
Crossrefs
Programs
-
PARI
A002808(n) = { my(k=-1); while( -n + n += -k + k=primepi(n), ); n}; A257729(n) = { if(1==n,n,if(isprime(n),prime(1+A257729(primepi(n))),if(4==n,2,A002808(A257729(n-primepi(n)-1)-1))))}; for(n=1, 10000, write("b257729.txt", n, " ", A257729(n))); \\ After M. F. Hasler's PARI-code for A236854.
-
Scheme
;; With memoizing definec-macro. (definec (A257729 n) (cond ((<= n 1) n) ((= 1 (A010051 n)) (A065091 (A257729 (A000720 n)))) (else (A065090 (+ 1 (A257729 (A065855 n))))))) ;; Alternatively, by composing other permutations: (define (A257729 n) (A257728 (A246377 n)))
Comments