A257740 Number T(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the multiset; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 3, 0, 3, 14, 13, 0, 5, 49, 114, 73, 0, 7, 148, 672, 1028, 501, 0, 11, 427, 3334, 9182, 10310, 4051, 0, 15, 1170, 15030, 66584, 129485, 114402, 37633, 0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353, 0, 30, 8288, 261880, 2557972, 11117600, 24917060, 30044014, 18536744, 4596553
Offset: 0
Examples
T(2,2) = 3: {ab}, {ba}, {a,b}. T(3,2) = 14: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}, {a,a,b}, {a,b,b}. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 3; 0, 3, 14, 13; 0, 5, 49, 114, 73; 0, 7, 148, 672, 1028, 501; 0, 11, 427, 3334, 9182, 10310, 4051; 0, 15, 1170, 15030, 66584, 129485, 114402, 37633; 0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add(add( d*k^d, d=numtheory[divisors](j)) *A(n-j, k), j=1..n)/n) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^#&]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A144074(n,k-i).
Extensions
Name changed by Alois P. Heinz, Sep 21 2018
Comments