cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257740 Number T(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the multiset; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 3, 14, 13, 0, 5, 49, 114, 73, 0, 7, 148, 672, 1028, 501, 0, 11, 427, 3334, 9182, 10310, 4051, 0, 15, 1170, 15030, 66584, 129485, 114402, 37633, 0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353, 0, 30, 8288, 261880, 2557972, 11117600, 24917060, 30044014, 18536744, 4596553
Offset: 0

Views

Author

Alois P. Heinz, May 06 2015

Keywords

Comments

Row n is the inverse binomial transform of the n-th row of array A144074, which has the Euler transform of the powers of k in column k.

Examples

			T(2,2) = 3: {ab}, {ba}, {a,b}.
T(3,2) = 14: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}, {a,a,b}, {a,b,b}.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,    3;
  0,  3,   14,    13;
  0,  5,   49,   114,     73;
  0,  7,  148,   672,   1028,     501;
  0, 11,  427,  3334,   9182,   10310,    4051;
  0, 15, 1170, 15030,  66584,  129485,  114402,   37633;
  0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000041 (for n>0), A261043, A320213, A320214, A320215, A320216, A320217, A320218, A320219, A320220.
Row sums give A257741.
Main diagonal gives A000262.
T(2n,n) gives A257742.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*k^d, d=numtheory[divisors](j)) *A(n-j, k), j=1..n)/n)
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^#&]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A144074(n,k-i).

Extensions

Name changed by Alois P. Heinz, Sep 21 2018