A257741 Number of multisets of nonempty words with a total of n letters over n-ary alphabet such that if a letter occurs in the multiset all predecessors occur at least once.
1, 1, 5, 30, 241, 2356, 27315, 364319, 5488468, 92040141, 1698933390, 34206221161, 745622368096, 17486274798203, 438859174516837, 11732964019785027, 332818604033186036, 9981540739647177238, 315518234680527952625, 10482878954868309043158, 365158449014981632341391
Offset: 0
Keywords
Examples
a(0) = 1: {}. a(1) = 1: {a}. a(2) = 5: {a,a}, {aa}, {ab}, {ba}, {a,b}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^#&]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz in A257740 *)
Formula
a(n) = Sum_{k=0..n} A257740(n,k).