cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257774 Numbers n such that the products of the decimal digits of n^2 and n^3 coincide, n^2 and n^3 are zeroless.

Original entry on oeis.org

1, 5, 7, 6057, 292839, 1295314, 4897814, 4967471, 5097886, 6010324, 6919146, 7068165, 7189558, 9465077, 15347958, 22842108, 24463917, 26754863, 43378366, 48810128, 48885128, 50833026, 54588458, 54649688, 68093171, 69925865, 69980346, 73390374, 74357144
Offset: 1

Views

Author

Pieter Post, May 08 2015

Keywords

Comments

This sequence is more sporadic than A257760. It appears there is no sequence for zeroless numbers n and n^3 such that the products of the decimal digits coincide, except for the trivial 1.

Examples

			5 is in the sequence since 5^2 = 25 and 5^3 = 125 and we have 2*5 = 1*2*5 = 10 > 0.
6057 is in the sequence since 6057^2 = 36687249 and 6057^3 = 222214667193 and we have 3*6*6*8*7*2*4*9 = 2*2*2*2*1*4*6*6*7*1*9*3 = 435456 > 0.
		

Crossrefs

Programs

  • Mathematica
    pod[n_] := Times@@IntegerDigits@n; Select[Range[10^7], pod[#^3] == pod[#^2] > 0 &] (* Giovanni Resta, May 08 2015 *)

Extensions

Corrected and extended by Giovanni Resta, May 08 2015