A257774 Numbers n such that the products of the decimal digits of n^2 and n^3 coincide, n^2 and n^3 are zeroless.
1, 5, 7, 6057, 292839, 1295314, 4897814, 4967471, 5097886, 6010324, 6919146, 7068165, 7189558, 9465077, 15347958, 22842108, 24463917, 26754863, 43378366, 48810128, 48885128, 50833026, 54588458, 54649688, 68093171, 69925865, 69980346, 73390374, 74357144
Offset: 1
Examples
5 is in the sequence since 5^2 = 25 and 5^3 = 125 and we have 2*5 = 1*2*5 = 10 > 0. 6057 is in the sequence since 6057^2 = 36687249 and 6057^3 = 222214667193 and we have 3*6*6*8*7*2*4*9 = 2*2*2*2*1*4*6*6*7*1*9*3 = 435456 > 0.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..544 (terms < 4*10^10)
Programs
-
Mathematica
pod[n_] := Times@@IntegerDigits@n; Select[Range[10^7], pod[#^3] == pod[#^2] > 0 &] (* Giovanni Resta, May 08 2015 *)
Extensions
Corrected and extended by Giovanni Resta, May 08 2015
Comments